Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration
of sensory features as a possible core deficit. Yet, there is little understanding of the
neuronal processing of elementary sensory features in ASD. For typically developed individuals,
we previously established a direct link between frequency-specific neural activity
and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex
increased approximately linearly with the strength of visual motion. Using magnetoencephalography
(MEG), we investigated whether in individuals with ASD neural activity reflect the
coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants
with ASD and 14 control participants performed a motion direction discrimination task
with increasing levels of motion coherence. A polynomial regression analysis revealed that
gamma-band power increased significantly stronger with motion coherence in ASD compared
to controls, suggesting excessive visual activation with increasing stimulus intensity
originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural
responses with increasing stimulus intensity suggest an enhanced response gain in ASD.
Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency
oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatoryinhibitory
balance underlies enhanced neural responses to coherent motion in ASD