69 research outputs found

    Numerical modeling of the tension stiffening in reinforced concrete members via discontinuum models

    Get PDF
    [prova tipográfica]This study presents a numerical investigation on the fracture mechanism of tension stiffening phenomenon in reinforced concrete members. A novel approach using the discrete element method (DEM) is proposed, where three-dimensional randomly generated distinct polyhedral blocks are used, representing concrete and one-dimensional truss elements are utilized, representing steel reinforcements. Thus, an explicit representation of reinforced concrete members is achieved, and the mechanical behavior of the system is solved by integrating the equations of motion for each block using the central difference algorithm. The inter-block interactions are taken into consideration at each contact point with springs and cohesive frictional elements. Once the applied modeling strategy is validated, based on previously published experimental findings, a sensitivity analysis is performed for bond stiffness, cohesion strength, and the number of truss elements. Hence, valuable inferences are made regarding discontinuum analysis of reinforced concrete members, including concrete-steel interaction and their macro behavior. The results demonstrate that the proposed phenomenological modeling strategy successfully captures the concrete-steel interaction and provides an accurate estimation of the macro behavior

    A Middle Palaeolithic wooden digging stick from Aranbaltza III, Spain

    Get PDF
    Aranbaltza is an archaeological complex formed by at least three open-air sites. Between 2014 and 2015 a test excavation carried out in Aranbaltza III revealed the presence of a sand and clay sedimentary sequence formed in floodplain environments, within which six sedimentary units have been identified. This sequence was formed between 137±50 ka, and includes several archaeological horizons, attesting to the long-term presence of Neanderthal communities in this area. One of these horizons, corresponding with Unit 4, yielded two wooden tools. One of these tools is a beveled pointed tool that was shaped through a complex operational sequence involving branch shaping, bark peeling, twig removal, shaping, polishing, thermal exposition and chopping. A use-wear analysis of the tool shows it to have traces related with digging soil so it has been interpreted as representing a digging stick. This is the first time such a tool has been identified in a European Late Middle Palaeolithic context; it also represents one of the first well-preserved Middle Palaeolithic wooden tool found in southern Europe. This artefact represents one of the few examples available of wooden tool preservation for the European Palaeolithic, allowing us to further explore the role wooden technologies played in Neanderthal communities

    The cohesive band model: A cohesive surface formulation with stress triaxiality

    Get PDF
    In the cohesive surface model cohesive tractions are transmitted across a two-dimensional surface, which is embedded in a three-dimensional continuum. The relevant kinematic quantities are the local crack opening displacement and the crack sliding displacement, but there is no kinematic quantity that represents the stretching of the fracture plane. As a consequence, in-plane stresses are absent, and fracture phenomena as splitting cracks in concrete and masonry, or crazing in polymers, which are governed by stress triaxiality, cannot be represented properly. In this paper we extend the cohesive surface model to include in-plane kinematic quantities. Since the full strain tensor is now available, a three-dimensional stress state can be computed in a straightforward manner. The cohesive band model is regarded as a subgrid scale fracture model, which has a small, yet finite thickness at the subgrid scale, but can be considered as having a zero thickness in the discretisation method that is used at the macroscopic scale. The standard cohesive surface formulation is obtained when the cohesive band width goes to zero. In principle, any discretisation method that can capture a discontinuity can be used, but partition-of-unity based finite element methods and isogeometric finite element analysis seem to have an advantage since they can naturally incorporate the continuum mechanics. When using interface finite elements, traction oscillations that can occur prior to the opening of a cohesive crack, persist for the cohesive band model. Example calculations show that Poisson contraction influences the results, since there is a coupling between the crack opening and the in-plane normal strain in the cohesive band. This coupling holds promise for capturing a variety of fracture phenomena, such as delamination buckling and splitting cracks, that are difficult, if not impossible, to describe within a conventional cohesive surface model. © 2013 Springer Science+Business Media Dordrecht

    Assessment of the settlement vulnerability of masonry buildings

    No full text
    Excavation works in urban areas require a preliminary risk damage assessment. In historical cities, the prediction of building response to settlements is necessary to reduce the risk of damage of the architectural heritage. The current method used to predict the building damage due to ground deformations is the Limiting Tensile Strain Method (LTSM). In this approach the building is modelled as an elastic beam subjected to imposed Greenfield settlements and the induced tensile strains are compared with a limit value for the material. These assumptions can lead to a non realistic evaluation of the damage. In this paper, the possibility to apply a settlement risk assessment derived from the seismic vulnerability approach is considered. The parameters that influence the structural response to settlements can be defined through numerical analyses which take into account the nonlinear behaviour of masonry and the soil-structure interaction. The effects of factors like material quality, geometry of the structure, amount of openings, type of foundation or the actual state of preservation can be included in a global vulnerability index, which should indicate the building susceptibility to damage by differential settlements of a given magnitude. Vulnerability curves will represent the expected damage of each vulnerability class of building as a function of the settlement

    Sensitivity study on tunnelling induced damage to a masonry façade

    No full text
    Assessing the potential damage caused by soil subsidence to masonry structures is essential for the successful realisation of underground projects in urban areas. The damage assessment procedures need to take into account the highly non-linear behaviour of the structural materials, characterised by brittle cracking and consequent stress redistribution, and the important effect of soil-structure interaction. This paper presents the results of a sensitivity study performed on a 2D finite element model that was validated through comparison with experimental results. The study investigates the effect of openings, material properties, building weight, initial damage, normal and shear behaviour of the base interface and applied settlement profile. The results assess quantitatively the major role played by the normal stiffness of the soil-structure interaction and by the material parameters defining the quasi-brittle masonry behaviour
    corecore