131 research outputs found
Cryptic Disc Structures Resembling Ediacaran Discoidal Fossils from the Lower Silurian Hellefjord Schist, Arctic Norway
The Hellefjord Schist, a volcaniclastic psammite-pelite formation in the Caledonides of Arctic Norway contains discoidal impressions and apparent tube casts that share morphological and taphonomic similarities to Neoproterozoic stem-holdfast forms. U-Pb zircon geochronology on the host metasediment indicates it was deposited between 437 ± 2 and 439 ± 3 Ma, but also indicates that an inferred basal conglomerate to this formation must be part of an older stratigraphic element, as it is cross-cut by a 546 ± 4 Ma pegmatite. These results confirm that the Hellefjord Schist is separated from underlying older Proterozoic rocks by a thrust. It has previously been argued that the Cambrian Substrate Revolution destroyed the ecological niches that the Neoproterozoic frond-holdfasts organisms occupied. However, the discovery of these fossils in Silurian rocks demonstrates that the environment and substrate must have been similar enough to Neoproterozoic settings that frond-holdfast bodyplans were still ecologically viable some hundred million years later
Origin of the TTC values for compounds that are genotoxic and/or carcinogenic and an approach for their revaluation
The threshold of toxicological concern (TTC) approach is a resource-effective de minimismethod for the safety assessment of chemicals, based on distributional analysis of the results of a large number of toxicological studies. It is being increasingly used to screen and prioritise substances with low exposure for which there is little or no toxicological information. The first step in the approach is the identification of substances that may be DNA-reactive mutagens, to which the lowest TTC value is applied. This TTC value was based on analysis of the cancer potency database and involved a number of assumptions that no longer reflect the state-of-the-science and some of which were not as transparent as they could have been. Hence, review and updating of the database is proposed, using inclusion and exclusion criteria reflecting current knowledge. A strategy for the selection of appropriate substances for TTC determination, based on consideration of weight of evidence for genotoxicity and carcinogenicity is outlined. Identification of substances that are carcinogenic by a DNA-reactive mutagenicmode of action and those that clearly act by a non-genotoxic mode of action will enable the protectiveness to be determined of both the TTC for DNA-reactive mutagenicityand that applied by default to substances that may be carcinogenic but are unlikely to be DNA-reactive mutagens (i.e. for Cramer class I-III compounds). Critical to the application of the TTC approach to substances that are likely to be DNA-reactive mutagens is the reliability of the software tools used to identify such compounds. Current methods for this task are reviewed and recommendations made for their application
Prediction of damage accrual in systemic lupus erythematosus using the Systemic Lupus International Collaborating Clinics Frailty Index (SLICC-FI)
OBJECTIVE: The Systemic Lupus International Collaborating Clinics (SLICC) frailty index (FI) has been shown to predict mortality, but its association with other important outcomes is unknown. We examined the association of baseline SLICC-FI values with damage accrual in the SLICC inception cohort. METHODS: The baseline visit was defined as the first at which both organ damage (SLICC/ACR Damage Index [SDI]) and health-related quality of life (Short-Form 36 [SF-36]) were assessed. Baseline SLICC-FI scores were calculated. Damage accrual was measured by the increase in SDI between the baseline assessment and the last study visit. Multivariable negative binomial regression estimated the association between baseline SLICC-FI values and the rate of increase in the SDI during follow-up, adjusting for relevant demographic and clinical characteristics. RESULTS: The 1549 SLE patients eligible for this analysis were mostly female (88.7%) with mean (standard deviation, SD) age 35.7 (13.3) years and median (interquartile range) disease duration 1.2 (0.9-1.5) years at baseline. Mean (SD) baseline SLICC-FI was 0.17 (0.08) with a range of 0-0.51. Over a mean (SD) follow-up of 7.2 (3.7) years, 653 patients (42.2%) had an increase in SDI. Higher baseline SLICC-FI values (per 0.05 increment) were associated with higher rates of increase in the SDI during follow-up (Incidence Rate Ratio [IRR] 1.19; 95% CI 1.13-1.25), after adjusting for age, sex, ethnicity/region, education, baseline SLEDAI-2K, baseline SDI, and baseline use of corticosteroids, antimalarials, and immunosuppressives. CONCLUSION: The SLICC-FI predicts damage accrual in incident SLE, which further supports the SLICC-FI as a valid health measure in SLE
Does economic development contribute to sex differences in ischaemic heart disease mortality? Hong Kong as a natural experiment using a case-control study
<p>Abstract</p> <p>Background</p> <p>The male excess risk of premature ischemic heart disease (IHD) mortality may be partially due to an unknown macro-environmental influence associated with economic development. We examined whether excess male risk of IHD mortality was higher with birth in an economically developed environment.</p> <p>Methods</p> <p>We used multivariable logistic regression in a population-based case-control study of all adult deaths in Hong Kong Chinese in 1998 to compare sex differences in IHD mortality (1,189 deaths in men, 1,035 deaths in women and 20,842 controls) between Hong Kong residents born in economically developed Hong Kong or in contemporaneously undeveloped Guangdong province in China.</p> <p>Results</p> <p>Younger (35–64 years) native-born Hong Kong men had a higher risk of IHD death than such women (odds ratio 2.91, 95% confidence interval 1.66 to 5.13), adjusted for age, socio-economic status and lifestyle. There was no such sex difference in Hong Kong residents who had migrated from Guangdong. There were no sex differences in pneumonia deaths by birth place.</p> <p>Conclusion</p> <p>Most of these people migrated as young adults; we speculate that environmentally mediated differences in pubertal maturation (when the male disadvantage in lipids and fat patterning emerges) may contribute to excess male premature IHD mortality in developed environments.</p
Characterization of Granulations of Calcium and Apatite in Serum as Pleomorphic Mineralo-Protein Complexes and as Precursors of Putative Nanobacteria
Calcium and apatite granulations are demonstrated here to form in both human and
fetal bovine serum in response to the simple addition of either calcium or
phosphate, or a combination of both. These granulations are shown to represent
precipitating complexes of protein and hydroxyapatite (HAP) that display marked
pleomorphism, appearing as round, laminated particles, spindles, and films.
These same complexes can be found in normal untreated serum, albeit at much
lower amounts, and appear to result from the progressive binding of serum
proteins with apatite until reaching saturation, upon which the mineralo-protein
complexes precipitate. Chemically and morphologically, these complexes are
virtually identical to the so-called nanobacteria (NB) implicated in numerous
diseases and considered unusual for their small size, pleomorphism, and the
presence of HAP. Like NB, serum granulations can seed particles upon transfer to
serum-free medium, and their main protein constituents include albumin,
complement components 3 and 4A, fetuin-A, and apolipoproteins A1 and B100, as
well as other calcium and apatite binding proteins found in the serum. However,
these serum mineralo-protein complexes are formed from the direct chemical
binding of inorganic and organic phases, bypassing the need for any biological
processes, including the long cultivation in cell culture conditions deemed
necessary for the demonstration of NB. Thus, these serum granulations may result
from physiologically inherent processes that become amplified with calcium
phosphate loading or when subjected to culturing in medium. They may be viewed
as simple mineralo-protein complexes formed from the deployment of
calcification-inhibitory pathways used by the body to cope with excess calcium
phosphate so as to prevent unwarranted calcification. Rather than representing
novel pathophysiological mechanisms or exotic lifeforms, these results indicate
that the entities described earlier as NB most likely originate from calcium and
apatite binding factors in the serum, presumably calcification inhibitors, that
upon saturation, form seeds for HAP deposition and growth. These calcium
granulations are similar to those found in organisms throughout nature and may
represent the products of more general calcium regulation pathways involved in
the control of calcium storage, retrieval, tissue deposition, and disposal
Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts
Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007).
Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold.
The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates.
Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants.
The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances
Cyanobacterial lipopolysaccharides and human health – a review
Cyanobacterial lipopolysaccharide/s (LPS) are frequently cited in the cyanobacteria literature as toxins responsible for a variety of heath effects in humans, from skin rashes to gastrointestinal, respiratory and allergic reactions. The attribution of toxic properties to cyanobacterial LPS dates from the 1970s, when it was thought that lipid A, the toxic moiety of LPS, was structurally and functionally conserved across all Gram-negative bacteria. However, more recent research has shown that this is not the case, and lipid A structures are now known to be very different, expressing properties ranging from LPS agonists, through weak endotoxicity to LPS antagonists. Although cyanobacterial LPS is widely cited as a putative toxin, most of the small number of formal research reports describe cyanobacterial LPS as weakly toxic compared to LPS from the Enterobacteriaceae. We systematically reviewed the literature on cyanobacterial LPS, and also examined the much lager body of literature relating to heterotrophic bacterial LPS and the atypical lipid A structures of some photosynthetic bacteria. While the literature on the biological activity of heterotrophic bacterial LPS is overwhelmingly large and therefore difficult to review for the purposes of exclusion, we were unable to find a convincing body of evidence to suggest that heterotrophic bacterial LPS, in the absence of other virulence factors, is responsible for acute gastrointestinal, dermatological or allergic reactions via natural exposure routes in humans. There is a danger that initial speculation about cyanobacterial LPS may evolve into orthodoxy without basis in research findings. No cyanobacterial lipid A structures have been described and published to date, so a recommendation is made that cyanobacteriologists should not continue to attribute such a diverse range of clinical symptoms to cyanobacterial LPS without research confirmation
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Small Theropod Teeth from the Late Cretaceous of the San Juan Basin, Northwestern New Mexico and Their Implications for Understanding Latest Cretaceous Dinosaur Evolution
Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian - Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately coeval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost during the Maastrichtian in New Mexico. The same pattern seen in northern faunas, which may provide evidence for an abrupt dinosaur extinction
Quantifying oxygen distortions in lithium-rich transition-metal-oxide cathodes using ABF STEM
Lithium-rich cathodes can store excess charge beyond the transition metal redox capacity by participation of oxygen in reversible anionic redox reactions. Although these processes are crucial for achieving high energy densities, their structural origins are not yet fully understood. Here, we explore the use of annular bright-field (ABF) imaging in scanning transmission electron microscopy (STEM) to measure oxygen distortions in charged Li1.2Ni0.2Mn0.6O2. We show that ABF STEM data can provide positional accuracies below 20 pm but this is restricted to cases where no specimen mistilt is present, and only for a range of thicknesses above 3.5 nm. The reliability of these measurements is compromised even when the experimental and post-processing designs are optimised for accuracy and precision, indicating that extreme care must be taken when attempting to quantify distortions in these materials
- …