1,415 research outputs found

    Prescribing patterns in premenstrual syndrome

    Get PDF
    BACKGROUND: Over 300 therapies have been proposed for premenstrual syndrome. To date there has been only one survey conducted in the UK of PMS treatments prescribed by GPs, a questionnaire-based study by the National Association of Premenstrual Syndrome in 1989. Since then, selective serotonin re-uptake inhibitors have been licensed for severe PMS/PMDD, and governmental recommendations to reduce the dosage of vitamin B6 (the first choice over-the-counter treatment for many women with PMS) have been made. This study investigates the annual rates of diagnoses and prescribing patterns for premenstrual syndrome (1993–1998) within a computerised general practitioner database. METHODS: Retrospective survey of prescribing data for premenstrual syndrome between 1993–1998 using the General Practice Research Database for the West Midlands Region which contains information on 282,600 female patients RESULTS: Overall the proportion of women with a prescription-linked diagnosis of premenstrual syndrome has halved over the five years. Progestogens including progesterone were the most commonly recorded treatment for premenstrual syndrome during the whole study period accounting for over 40% of all prescriptions. Selective serotonin-reuptake inhibitors accounted for only 2% of the prescriptions in 1993 but rose to over 16% by 1998, becoming the second most commonly recorded treatment. Vitamin B6 accounted for 22% of the prescriptions in 1993 but dropped markedly between 1997 and 1998 to 11%. CONCLUSIONS: This study shows a yearly decrease in the number of prescriptions linked to diagnoses for premenstrual syndrome. Progestogens including progesterone, is the most widely prescribed treatment for premenstrual syndrome despite the lack of evidence demonstrating their efficacy

    Alpha-2-Macroglobulin Is Acutely Sensitive to Freezing and Lyophilization: Implications for Structural and Functional Studies.

    Get PDF
    Alpha-2-macroglobulin is an abundant secreted protein that is of particular interest because of its diverse ligand binding profile and multifunctional nature, which includes roles as a protease inhibitor and as a molecular chaperone. The activities of alpha-2-macroglobulin are typically dependent on whether its conformation is native or transformed (i.e. adopts a more compact conformation after interactions with proteases or small nucleophiles), and are also influenced by dissociation of the native alpha-2-macroglobulin tetramer into stable dimers. Alpha-2-macroglobulin is predominately present as the native tetramer in vivo; once purified from human blood plasma, however, alpha-2-macroglobulin can undergo a number of conformational changes during storage, including transformation, aggregation or dissociation. We demonstrate that, particularly in the presence of sodium chloride or amine containing compounds, freezing and/or lyophilization of alpha-2-macroglobulin induces conformational changes with functional consequences. These conformational changes in alpha-2-macroglobulin are not always detected by standard native polyacrylamide gel electrophoresis, but can be measured using bisANS fluorescence assays. Increased surface hydrophobicity of alpha-2-macroglobulin, as assessed by bisANS fluorescence measurements, is accompanied by (i) reduced trypsin binding activity, (ii) increased chaperone activity, and (iii) increased binding to the surfaces of SH-SY5Y neurons, in part, via lipoprotein receptors. We show that sucrose (but not glycine) effectively protects native alpha-2-macroglobulin from denaturation during freezing and/or lyophilization, thereby providing a reproducible method for the handling and long-term storage of this protein.Early Career Fellowship from the National Health and Medical Research Council GNT1012521(A.R.W.); Wellcome Trust Programme Grant (J.R.K., C.M.D.) 094425/Z/10/Z; Samsung GRO Grant (M.R.W.)This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pone.013003

    Reduction of Dopamine Level Enhances the Attractiveness of Male Drosophila to Other Males

    Get PDF
    Dopamine is an important neuromodulator in animals and its roles in mammalian sexual behavior are extensively studied. Drosophila as a useful model system is widely used in many fields of biological studies. It has been reported that dopamine reduction can affect female receptivity in Drosophila and leave male-female courtship behavior unaffected. Here, we used genetic and pharmacological approaches to decrease the dopamine level in dopaminergic cells in Drosophila, and investigated the consequence of this manipulation on male homosexual courtship behavior. We find that reduction of dopamine level can induce Drosophila male-male courtship behavior, and that this behavior is mainly due to the increased male attractiveness or decreased aversiveness towards other males, but not to their enhanced propensity to court other males. Chemical signal input probably plays a crucial role in the male-male courtship induced by the courtees with reduction of dopamine. Our finding provides insight into the relationship between the dopamine reduction and male-male courtship behavior, and hints dopamine level is important for controlling Drosophila courtship behavior

    Dendritic Spikes Amplify the Synaptic Signal to Enhance Detection of Motion in a Simulation of the Direction-Selective Ganglion Cell

    Get PDF
    The On-Off direction-selective ganglion cell (DSGC) in mammalian retinas responds most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs (postsynaptic potentials) are only weakly directional, indicating that spike generation includes marked enhancement of the directional signal. We used a realistic computational model based on anatomical and physiological measurements to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS) in the local dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of the cell's dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there could be analogous mechanisms within cortical circuitry

    Measurement of the top quark mass using the matrix element technique in dilepton final states

    Get PDF
    We present a measurement of the top quark mass in pp¯ collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7  fb−1. The matrix element technique is applied to tt¯ events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt¯ decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt=173.93±1.84  GeV

    Pathogenesis of Henoch-Schönlein purpura nephritis

    Get PDF
    The severity of renal involvement is the major factor determining the long-term outcome of children with Henoch-Schönlein purpura (HSP) nephritis (HSPN). Approximately 40% children with HSP develop nephritis, usually within 4 to 6 weeks after the initial onset of the typical purpuric rashes. Although the pathogenetic mechanisms are still not fully delineated, several studies suggest that galactose-deficient IgA1 (Gd-IgA1) is recognized by anti-glycan antibodies, leading to the formation of the circulating immune complexes and their mesangial deposition that induce renal injury in HSPN

    Measurement of B(t->Wb)/B(t->Wq) at the Collider Detector at Fermilab

    Get PDF
    We present a measurement of the ratio of top-quark branching fractions R= B(t -> Wb)/B(t -> Wq), where q can be a b, s or a d quark, using lepton-plus-jets and dilepton data sets with integrated luminosity of ~162 pb^{-1} collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of t-tbar events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level.Comment: 7 pages, 2 figures, published in Physical Review Letters; changes made to be consistent with published versio
    corecore