1,429 research outputs found
Full Elite Sets for Multi-Objective Optimisation
Copyright © 2002 Springer. The final publication is available at link.springer.com5th International Conference on Adaptive Computing in Design and Manufacture (ACDM 2002), Exeter, UK, 16-18 April, 2002Multi-objective evolutionary algorithms frequently use an archive of non-dominated solutions to approximate the Pareto front. We show that the truncation of this archive to a limited number of solutions can lead to oscillating and shrinking estimates of the Pareto front. New data structures to permit efficient query and update of the full archive are proposed, and the superior quality of frontal estimates found using the full archive is illustrated on test problems
Fundamental Movement Skills of Preschool Children in Northwest England
Summary. - This cross-sectional study examined fundamental movement skill competency among deprived preschool children in Northwest England and explored sex differences. A total of 168 preschool children (age 3-5 years) were included in the study. Twelve skills were assessed using the Children’s Activity and Movement in Preschool Motor Skills Protocol and video analysis. Sex differences were explored using independent t-tests, Mann-Whitney U-test and Chi Square analysis at the subtest, skill and component levels, respectively. Overall competence was found to be low amongst both sexes, although it was higher for locomotor skills than for object-control skills. Similar patterns were observed at the component level. Boys had significantly better object-control skills than girls, with greater competence observed for the kick and overarm throw, whilst girls were more competent at the run, hop and gallop. The findings of low competency suggest that developmentally-appropriate interventions should be implemented in preschool settings to promote movement skills, with targeted activities for boys and girls
Fundamental Movement Skills in relation to weekday and weekend physical activity in preschool children
OBJECTIVES: To examine associations between fundamental movement skills and weekday and weekend physical activity among preschool children living in deprived communities. DESIGN: Cross-sectional observation study. METHODS: Six locomotor skills and 6 object-control skills were video-assessed using The Children's Activity and Movement in Preschool Study Motor Skills Protocol. Physical activity was measured via hip-mounted accelerometry. A total of 99 children (53% boys) aged 3-5 years (M 4.6, SD 0.5) completed all assessments. Multilevel mixed regression models were used to examine associations between fundamental movement skills and physical activity. Models were adjusted for clustering, age, sex, standardised body mass index and accelerometer wear time. RESULTS: Boys were more active than girls and had higher object-control skill competency. Total skill score was positively associated with weekend moderate-to-vigorous physical activity (p=0.034) but not weekday physical activity categories (p>0.05). When subdomains of skills were examined, object-control skills was positively associated with light physical activity on weekdays (p=0.008) and with light (p=0.033), moderate-to-vigorous (p=0.028) and light- and moderate-to-vigorous (p=0.008) physical activity at weekends. Locomotor skill competency was positively associated with moderate-to-vigorous physical activity on weekdays (p=0.016) and light physical activity during the weekend (p=0.035). CONCLUSIONS: The findings suggest that developing competence in both locomotor and object-control skills may be an important element in promoting an active lifestyle in young children during weekdays and at weekends
Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric aggregates
The presence of oligomeric aggregates, which is often observed during the
process of amyloid formation, has recently attracted much attention since it
has been associated with neurodegenerative conditions such as Alzheimer's and
Parkinson's diseases. We provide a description of a sequence-indepedent
mechanism by which polypeptide chains aggregate by forming metastable
oligomeric intermediate states prior to converting into fibrillar structures.
Our results illustrate how the formation of ordered arrays of hydrogen bonds
drives the formation of beta-sheets within the disordered oligomeric aggregates
that form early under the effect of hydrophobic forces. Initially individual
beta-sheets form with random orientations, which subsequently tend to align
into protofilaments as their lengths increases. Our results suggest that
amyloid aggregation represents an example of the Ostwald step rule of first
order phase transitions by showing that ordered cross-beta structures emerge
preferentially from disordered compact dynamical intermediate assemblies.Comment: 14 pages, 4 figure
Subretinal pigment epithelial deposition of Drusen components including hydroxyapatite in a primary cell culture model
Purpose: Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods: Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results: Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions: The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss
A multi-tier adaptive grid algorithm for the evolutionary multi-objective optimisation of complex problems
The multi-tier Covariance Matrix Adaptation Pareto Archived Evolution Strategy (m-CMA-PAES) is an evolutionary multi-objective optimisation (EMO) algorithm for real-valued optimisation problems. It combines a non-elitist adaptive grid based selection scheme with the efficient strategy parameter adaptation of the elitist Covariance Matrix Adaptation Evolution Strategy (CMA-ES). In the original CMA-PAES, a solution is selected as a parent for the next population using an elitist adaptive grid archiving (AGA) scheme derived from the Pareto Archived Evolution Strategy (PAES). In contrast, a multi-tiered AGA scheme to populate the archive using an adaptive grid for each level of non-dominated solutions in the considered candidate population is proposed. The new selection scheme improves the performance of the CMA-PAES as shown using benchmark functions from the ZDT, CEC09, and DTLZ test suite in a comparison against the (μ+λ) μ λ Multi-Objective Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES). In comparison with MO-CMA-ES, the experimental results show that the proposed algorithm offers up to a 69 % performance increase according to the Inverse Generational Distance (IGD) metric
A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation
Nanoparticles introduced in living cells are capable of strongly promoting
the aggregation of peptides and proteins. We use here molecular dynamics
simulations to characterise in detail the process by which nanoparticle
surfaces catalyse the self- assembly of peptides into fibrillar structures. The
simulation of a system of hundreds of peptides over the millisecond timescale
enables us to show that the mechanism of aggregation involves a first phase in
which small structurally disordered oligomers assemble onto the nanoparticle
and a second phase in which they evolve into highly ordered beta-sheets as
their size increases
Degeneracy: a link between evolvability, robustness and complexity in biological systems
A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology.
This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability
“I Wasn’t Sure What It Meant to be Honest”—Formative Research towards a Physical Literacy Intervention for Preschoolers
Physical literacy (PL) as a concept is important in developing lifelong physical activity; however, there is little research exploring how PL can be developed during the preschool years. This two-phase qualitative study sought the insights of academics/expert practitioners and preschool staff towards PL in order to inform the design of future preschool PL interventions. Phase One comprised of nine semi-structured interviews with experts in the field of children’s physical activity and/or PL. Interview topics included perspectives on the concept of PL and recommendations for interventions targeted at improving preschool PL. Phase Two consisted of focus groups with practitioners from four local children’s centres. Focus groups explored perspectives on the feasibility and acceptability of proposed PL interventions. Interviews and focus groups were analysed by thematic analysis and means of representation, respectively. Findings revealed that whilst there was limited understanding about the concept of PL among preschool educators, knowledge of child development was evident and that all participants agreed that there was a need for further training for practitioners. Perceived barriers to promoting PL noted by practitioners included funding, policy, curricular priorities, parental opinions, and the preschool environment. It was recommended that interventions should be: (i) designed using a participatory approach including all key stakeholders, (ii) conducted over the long term, and (iii) incorporate opportunities for children to engage in free and outdoor play. Furthermore, any intervention should be flexible to allow for variation between children’s centres, aligned to current policy/children’s centre targets and provide training and resources in order to overcome perceived barriers.</jats:p
Prediction of peptide and protein propensity for amyloid formation
Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation
- …
