2,086 research outputs found

    Discovery of a strong magnetic field on the O star HD 191612: new clues to the future of theta1 Orionis C?

    Full text link
    From observations made with the ESPaDOnS spectropolarimeter, recently installed on the 3.6-m Canada--France--Hawaii Telescope, we report the discovery of a strong magnetic field in the Of?p spectrum variable HD 191612 -- only the second known magnetic O star (following theta1 Ori C). The stability of the observed Zeeman signature over four nights of observation, together with the non-rotational shape of line profiles, argue that the rotation period of HD 191612 is significantly longer than the 9-d value previously proposed. We suggest that the recently identified 538-d spectral-variability period is the rotation period, in which case the observed line-of-sight magnetic field of -220+-38 G implies a large-scale field (assumed dipolar) with a polar strength of about -1.5 kG. If confirmed, this scenario suggests that HD 191612 is, essentially, an evolved version of the near-ZAMS magnetic O star theta1 Ori C, but with an even stronger field (about 15 kG at an age similar to that of theta1Ori C). We suggest that the rotation rate of HD 191612, which is exceptionally slow by accepted O-star standards, could be due to angular-momentum dissipation through a magnetically confined wind.Comment: Accepted by MNRAS Letters, 5 pages, 2 figures, 2 table

    Intestinal absorption of macromolecules during viral enteritis: an experimental study on rotavirus-infected conventional and germ-free mice.

    Get PDF
    Epithelial transport and degradation of horseradish peroxidase (HRP), a macromolecular tracer, was studied in conventional and germ-free suckling mice following an experimental infection with rotavirus. Conventional and germ-free mice developed diarrhea from days 2 to 8 postinfection (pi), with growth failure. In mucosal homogenates, infectious virus detected by immunofluorescence on MA 104 cells was present from day 2 through day 8 pi in germ-free mice, but persisted longer (day 13 pi) in conventional mice. Only mild histological lesions were observed during diarrhea, but obvious macrovacuolation of epithelial cells and increased cellular density occurred during the convalescence period (days 9 to 13 pi). Intact and degraded HRP fluxes from mucosa to serosa were measured in vitro on segments of jejunum mounted in Ussing chambers. Both groups of mice developed increased HRP permeability during the experimental period, but at different times after inoculation: during the diarrheal period (days 2 and 3 pi) conventional mouse epithelium absorbed five times more HRP than noninfected controls and during the convalescence period (days 9 to 13 pi) HRP absorption in germ-free mice rose 10-fold as compared to its level before infection. In both cases, this increase in HRP permeability was entirely due to an increase in intact HRP absorption, probably via a transcellular route, and occurred without any alteration in degraded HRP transport. These results indicate that in mice, rotavirus infection causes a transient rise in gut permeability to undegraded proteins. The intestinal microflora seems to affect the timing, magnitude, and duration of this increased permeability

    Relocation and investment in R&D by firms

    Get PDF
    The literature on foreign direct investment has analyzed corporate location decisions when firms invest in R&D to reduce production costs. Such firms may set up new plants in other developed countries while maintaining their domestic plants. In contrast, we here consider firms that close down their domestic operations and relocate to countries where wage costs are lower. Thus, we assume that firms may reduce their production costs by investing in R&D and likewise by moving their plants abroad. We show that these two mechanisms are complementary. When a firm relocates it invests more in R&D than when it does not change its location and, therefore, its production cost is lower in the first case. As a result, investment in R&D encourages firms to relocate.info:eu-repo/semantics/publishedVersio

    Tree migration-rates : narrowing the gap between inferred post-glacial rates and projected rates

    Get PDF
    Faster-than-expected post-glacial migration rates of trees have puzzled ecologists for a long time. In Europe, post-glacial migration is assumed to have started from the three southern European peninsulas (southern refugia), where large areas remained free of permafrost and ice at the peak of the last glaciation. However, increasing palaeobotanical evidence for the presence of isolated tree populations in more northerly microrefugia has started to change this perception. Here we use the Northern Eurasian Plant Macrofossil Database and palaeoecological literature to show that post-glacial migration rates for trees may have been substantially lower (60–260 m yr–1) than those estimated by assuming migration from southern refugia only (115–550 m yr–1), and that early-successional trees migrated faster than mid- and late-successional trees. Post-glacial migration rates are in good agreement with those recently projected for the future with a population dynamical forest succession and dispersal model, mainly for early-successional trees and under optimal conditions. Although migration estimates presented here may be conservative because of our assumption of uniform dispersal, tree migration-rates clearly need reconsideration. We suggest that small outlier populations may be a key factor in understanding past migration rates and in predicting potential future range-shifts. The importance of outlier populations in the past may have an analogy in the future, as many tree species have been planted beyond their natural ranges, with a more beneficial microclimate than their regional surroundings. Therefore, climate-change-induced range-shifts in the future might well be influenced by such microrefugia

    Time-resolved detection of spin-transfer-driven ferromagnetic resonance and spin torque measurement in magnetic tunnel junctions

    Full text link
    Several experimental techniques have been introduced in recent years in attempts to measure spin transfer torque in magnetic tunnel junctions (MTJs). The dependence of spin torque on bias is important for understanding fundamental spin physics in magnetic devices and for applications. However, previous techniques have provided only indirect measures of the torque and their results to date for the bias dependence are qualitatively and quantitatively inconsistent. Here we demonstrate that spin torque in MTJs can be measured directly by using time-domain techniques to detect resonant magnetic precession in response to an oscillating spin torque. The technique is accurate in the high-bias regime relevant for applications, and because it detects directly small-angle linear-response magnetic dynamics caused by spin torque it is relatively immune to artifacts affecting competing techniques. At high bias we find that the spin torque vector differs markedly from the simple lowest-order Taylor series approximations commonly assumed.Comment: 29 pages, 5 figures including supplementary materia

    Layer thickness dependence of the current induced effective field vector in Ta|CoFeB|MgO

    Full text link
    The role of current induced effective magnetic field in ultrathin magnetic heterostructures is increasingly gaining interest since it can provide efficient ways of manipulating magnetization electrically. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we show vector measurements of the current induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field shows significant dependence on the Ta and CoFeB layers' thickness. In particular, 1 nm thickness variation of the Ta layer can result in nearly two orders of magnitude difference in the effective field. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects that contribute to the effective field. The relative size of the effective field vector components, directed transverse and parallel to the current flow, varies as the Ta thickness is changed. Our results illustrate the profound characteristics of just a few atomic layer thick metals and their influence on magnetization dynamics

    Conductivity and redox stability of new double perovskite oxide Sr 1.6 K 0.4 Fe 1+ x Mo 1− x O 6− δ (x= 0.2, 0.4, 0.6)

    Get PDF
    A series of new perovskite oxides Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6) were synthesised by solid state reaction method. Synthesis of Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6) was achieved above 700 °C in 5 % H2/Ar, albeit with the formation of impurity phases. Phase stability upon redox cycling was only observed for sample Sr1.6K0.4Fe1.4Mo0.6O6−δ. Redox cycling of Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6) demonstrates a strong dependence on high temperature reduction to achieve high conductivities. After the initial reduction at 1200 °C in 5 %H2/Ar, then re-oxidation in air at 700 °C and further reduction at 700 °C in 5 %H2/Ar, the attained conductivities were between 0.1 and 58.4 % of the initial conductivity after reduction 1200 °C in 5 %H2/Ar depending on the composition. In the investigated new oxides, sample Sr1.6K0.4Fe1.4Mo0.6O6−δ is most redox stable also retains reasonably high electrical conductivity, ~70 S/cm after reduction at 1200 °C and 2–3 S/cm after redox cycling at 700 °C, indicating it is a potential anode for SOFCs

    Secondary contact and admixture between independently invading populations of the Western corn rootworm, diabrotica virgifera virgifera in Europe

    Get PDF
    The western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is one of the most destructive pests of corn in North America and is currently invading Europe. The two major invasive outbreaks of rootworm in Europe have occurred, in North-West Italy and in Central and South-Eastern Europe. These two outbreaks originated from independent introductions from North America. Secondary contact probably occurred in North Italy between these two outbreaks, in 2008. We used 13 microsatellite markers to conduct a population genetics study, to demonstrate that this geographic contact resulted in a zone of admixture in the Italian region of Veneto. We show that i) genetic variation is greater in the contact zone than in the parental outbreaks; ii) several signs of admixture were detected in some Venetian samples, in a Bayesian analysis of the population structure and in an approximate Bayesian computation analysis of historical scenarios and, finally, iii) allelic frequency clines were observed at microsatellite loci. The contact between the invasive outbreaks in North-West Italy and Central and South-Eastern Europe resulted in a zone of admixture, with particular characteristics. The evolutionary implications of the existence of a zone of admixture in Northern Italy and their possible impact on the invasion success of the western corn rootworm are discussed
    corecore