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France

(Dated: 31 October 2018)

Laminar pipe flow with a controllable wall swirl has been studied both numerically and experimentally to
explore the behaviour of inelastic shear-dependent fluids. The pipe consists of two smoothly joined sections
that can be rotated independently about the same axis. The circumstance of flow entering a stationary
pipe from a rotating pipe (decaying swirl) has been investigated. Numerical parametric studies using both a
power-law model and a simplified Carreau model are conducted to investigate the effect of shear-thinning and
shear-thickening on the flow structure and the critical swirl ratio required to induce the breakdown at a range
of Reynolds numbers. A new method of scaling (i.e. a new Reynolds number) is presented that accounts for the
shear-dependent viscosity. Using this Reynolds number the data for all fluids (shear-thickening, Newtonian
and shear-thinning) approximately collapses. Experimental visualisations using an aqueous solution of a
xantham gum confirm the conclusions drawn from the numerical results.

I. INTRODUCTION

Vortex breakdown of swirling flows – the formation of
a stagnation point upstream of a region of near-stagnant
recirculating flow – has fascinated and intrigued many
since its discovery nearly 60 years ago1–4. One of the
key reasons for such continued study is surely the in-
herent artistic beauty embedded within it (coupled with
the non-trivial fluid dynamics at play). Classic flow
visualisation text books5 contain numerous such exam-
ples: experiments6 and numerical simulations7 of vortex
breakdown in a rotating endwall cylindrical container;
experiments5 and numerical simulations8 of vortex break-
down on delta wings, as well as supersonic flows9. Other
examples of such visualisations can be found in papers
studying cylindrical divergent tubes10,11 and slit-tube
arrangements12 amongst many other flows. The flow also
has many practical applications, the most widespread use
being for flame stabilization in furnaces and combustion
chambers where the recirculation bubble acts as a fluid-
dynamical flame holder2,3. However, in some flows, vor-
tex breakdown needs to be mitigated or avoided13 and
an improved understanding of the conditions leading to
vortex breakdown is also important in this context.

A. Vortex breakdown in non-Newtonian fluids

The flow produced by rotating one of the end-walls in
a cylindrical container completely filled with fluid is one
of the few situations of vortex breakdown that has been
studied in some detail for non-Newtonian fluids. It was
first investigated by Böhme, Rubart & Stenger (1992)14

using an essentially inelastic, shear-thinning fluid (0.1%
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wt. carboxymethlcellulose in a water/glycerine mixture).
The experimental study revealed single, double or triple
breakdown bubbles that were quantitatively similar to
those seen in the Newtonian case6, although they did
not occur at precisely the same Reynolds numbers (Re)
and aspect ratios. Böhme, Rubart & Stenger (1992)14

also conducted complimentary finite-element simulations
that were found to be in reasonable agreement with the
experimental findings. However, a study in the same ge-
ometry by Day et al. (1996)15 found that the flow field
for their non-Newtonian fluid was quite different to the
Newtonian case. The important difference here being
that the fluid was elastic (as well as shear-thinning) and
it was at low Reynolds numbers and high elasticity num-
bers (El = De/Re, where De is the Deborah number)
where elasticity becomes important and the behaviour
was found to be very different to the Newtonian case. In-
deed, at higher Reynolds numbers (Re > 1.5), and low El
where the effects of elasticity were negligible, the flow re-
verted back to the steady, Newtonian-like flow pattern15.

In further work in exactly the same facility as the
benchmark Newtonian case6, Escudier & Cullen (1996)16

investigated the behaviour of strongly shear-thinning
(pseudoplastic) fluids (which were only mildly elas-
tic). They discovered flow regimes involving a double-
vortex structure that was unlike the Newtonian case6, or
the previous non-Newtonian experiments using slightly
shear-thinning14 or highly elastic15 fluids. Later, Stokes
et al. (2001)17,18 conducted a detailed experimental study
of the flow of viscoelastic Boger fluids of various types and
concentrations. They found that the critical conditions
required for vortex breakdown varied significantly de-
pending on the fluid used. Similar to Day et al. (1996)15,
they found that a Newtonian-like vortex breakdown oc-
curred when inertia dominated, but weakly elastic flu-
ids were found to have a stabilising effect and limit the
range of conditions at which vortex breakdown was seen
to occur17. However, when elastic effects dominated a
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new time-dependent elastic instability (quite different to
the Newtonian instability) was observed18.

Rusak & Tichy (2002)19 explored the effect of elasticity
on the critical swirl level required for vortex breakdown
to occur in a pipe flow of non-Newtonian fluid by per-
forming a stability analysis utilising an Oldroyd-B con-
stitutive model (representing a constant-viscosity Boger
fluid) in the governing equations. It was found that in-
creasing the relaxation time increases the critical swirl
required for vortex breakdown to occur and also affected
the size of the recirculation.

Other flows of non-Newtonian fluids in scenarios where
vortex breakdown occurs have been studied, for exam-
ple the flow between two rotating spheres20. The gen-
eration of vortex rings in shear-thinning fluids has also
been investigated21. However, to date, the effect of shear-
thinning fluids on vortex breakdown in swirling pipe flow
has not received significant attention.

B. Vortex breakdown in swirling pipe flow

Vortex breakdown in swirling pipe flow was recently in-
vestigated experimentally and numerically using a New-
tonian fluid by Dennis, Seraudie & Poole (2014)22. This
work utilised a set-up that can be traced to the analytical
and numerical work of Lavan et al (1969)23, where the
pipe consists of two smoothly joined sections that can be
rotated independently about the same axis. Lavan et al23

combined a linearised analytical solution with a finite-
difference numerical technique. Subsequently, Macdon-
ald (1991)24 also took an analytical approach to reach a
very similar prediction for the occurrence of vortex break-
down in this arrangement. Crane and Burley (1976)25

conducted a further numerical investigation, as did Sil-
vester et al (1986)26: both studies found broad agreement
with the original work of Lavan et al. However, there was
still no experimental validation of these predictions.

Columnar swirling flow in a pipe was investigated by
Wang & Rusak (1997)27 using the unsteady Euler equa-
tions. Their analysis showed that when the incoming
flow has a swirl level that is above a critical level, the
columnar flow becomes unstable and small axisymmetric
disturbances propagate upstream and evolve into large
disturbances that lead to the formation of a new state
involving a recirculation region, i.e. vortex breakdown.
Subsequently, numerical computations were performed
that supported this mechanism of vortex breakdown28.

Dennis, Seraudie & Poole (2014)22 provided the first
experimental results along with an updated numerical
investigation. The agreement between the experimental
visualisations and the numerical solutions was found to
be excellent: both in terms of the size and structure of re-
circulation region and the critical conditions required to
induce the vortex breakdown in this set-up. An example
of the experimental visualistion and corresponding nu-
merical simulation is shown in figure 1. It was observed
that the recirculation region was steady and stationary

for constant boundary conditions.

FIG. 1: An illustrative example of vortex breakdown in
swirling pipe flow with decaying swirl (upstream pipe
rotation) Re = 8, Γ = 15; left hand side experiment;
right hand side simulation. Bulk flow is from top to
bottom. Reproduced from Phys. Fluids 26, 053602
(2014)22, with the permission of AIP Publishing.

The flow is governed by two non-dimensional groups:
the axial Reynolds number (Re = ρUD/µ, where U is
the bulk velocity, D is the pipe diameter and µ the
dynamic viscosity), and the swirl ratio (Γ = 0.5ωD/U
where 0.5ωD is the tangential velocity at the pipe wall).
For a given Re, a certain swirl ratio is required in or-
der to induce vortex breakdown. This is defined as the
critical swirl ratio (Γc). The analytical solutions23,24

accurately predicted this critical swirl ratio at vanish-
ingly small Reynolds numbers (Re < 1), but broke down
at higher Re. The numerical and experimental results
showed that as Re increased Γc tended to a constant
value22. As the swirl ratio is increased beyond the crit-
ical value the axial length of the recirculation region is
seen to increase (particularly in the upstream direction,
but also downstream)22,26. Very long recirculation re-
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gions (several pipe diameters in length) could be created
at high Γ. The radial width of the recirculation region
also grew with increasing swirl ratio, but beyond a mod-
erate value of Γ further growth was severely restricted by
the confines of the geometry.

Two different cases have been investigated using the
set-up. The first is decaying swirl, which is where the
upstream pipe is rotated and the downstream pipe is
stationary, thus the swirl in the flow decays downstream
of the pipe join. The second situation is growing swirl,
and is the opposite: the upstream pipe is stationary and
downstream pipe is rotated, therefore the swirl in the
flow grows downstream of the pipe join. In the case of
decaying swirl, vortex breakdown was seen to occur on
the pipe axis whereas in the growing-swirl case vortex
breakdown occurred at the tube wall and a toroidal zone
of recirculation was observed22.

Overall, the previous work has demonstrated that the
occurrence of vortex breakdown, as well as the size and
shape of the resulting recirculation region, can be con-
trolled by the speed of wall rotation and the choice of
wall rotated. This indicates that wall rotation could be
utilised as a flow control device in industrial applications.
Many viscous liquids used in processing and manufactur-
ing are non-Newtonian and thus far no non-Newtonian
fluid properties have been investigated in this geometry.
In this paper we do this by experimentally studying the
behaviour of an essentially inelastic shear-thinning solu-
tion for the case of decaying swirl. We use the experimen-
tal results to validate a Generalised Newtonian Fluid (the
simple power-law) model, as well as a simplified Carreau
model, using comparative numerical solutions and sub-
sequently extend the use of these models across a wide
range of shear-thinning and shear-thickening behaviour
not accessible with the experiment.

II. EXPERIMENT

A. Experimental arrangement

A full description (including schematic) of the exper-
imental rig used to perform all the experiments in this
work can be found in Dennis, Seraudie & Poole (2014)22.
Briefly, it consists of two identical glass pipes with an
internal diameter D = 50mm that are aligned end-on in
a vertical orientation. Each of the two pipes are 13D
in length. A small gap (< 1mm) between the two pipes
that make up the working section enables the two pipes
to be rotated independently. Surrounding this junction,
the pipes are enclosed in a glass viewing box filled with
the working fluid, which removes distortion due to the
curvature of the pipe wall for the purposes of imaging
the flow visualisation. The rotational speed of each pipe
can be controlled to an accuracy of ±2rpm, with a maxi-
mum rotation rate of 400rpm, providing access to a wide
range of swirl ratios. The flow is gravity-driven from a
supply tank situated at the top of the system. This sys-

tem approximates to a constant head tank as the volume
of fluid and surface area of the tank are large compared
to the flow rate through the test pipes. To control the
throughput, two needle valves are located downstream of
the working section with a float style mass flow meter in-
stalled between them to monitor the flow rate. The mass
flow meter is regularly calibrated across the operational
range of the experiment against weight measurements of
the working fluid that has passed through the rig over a
certain time period (the order of a few minutes).

B. Working fluids

Approximately 40 litres of fluid is required to fill the
system. In this investigation we use a semi-dilute aque-
ous solution of xanthan gum (Keltrol TF from Kelco).
The molecular weight is quoted by the manufacturer as
being approximately 106g/mol. At the concentrations of
xanthan gum (CXG) used in this investigation (0.1% to
0.15% w/w) the solution is shear-thinning and its rigid-
rod-like structure means that, outside of the linear small
amplitude regime, it is largely inelastic29–32. This fluid
has been chosen because of its shear-thinning nature and
low normal stress elasticity allowing us to attempt to
isolate the non-Newtonian effects. This enables us to use
it to compare to simulations in which we model shear-
thinning effects, but not viscoelasticity. The effect of
viscoelasticity on vortex breakdown in this flow geome-
try is not considered in this work and will be the subject
of future investigations.
The density and temperature of the xanthan gum mix-

tures were measured before and after each set of exper-
iments using an Anton Paar DMA 35N density meter
(with a quoted accuracy of 0.001g/cm3 and 0.2◦C). In-
dicative values are ρ = 997kg/m3 at 23.5◦C. The viscos-
ity of the mixture was measured using a TA Instruments
Rheolyst AR 1000 N controlled-stress rheometer in con-
junction with a 60mm diameter 2◦ acrylic cone to within
an uncertainty of 2%33. Example rheological measure-
ments showing the relationship between shear rate and
shear viscosity for three concentrations of xanthan gum
are given in figure 2. The corresponding power-law and
Carreau-Yasuda fits are also shown in figure 2 with the
model parameters given in tables I and II respectively.
It is noted that the infinite shear rate viscosity for the
Carreau-Yasuda fits are below that of the solvent, which
is physically impossible. This is due to the lack of rhe-
ological measurements at very high shear rates (which
means that µ∞ is not accurately modelled). However,
as these shear rates are not reached in the flow being
studied it is not crucial.
As expected, the measured rheology of the mixture

only follows a power-law over a limited range of shear
rates. The range where the fit is reasonable corresponds
to ≈ 3 − 300s−1, which is also approximately the range
of wall shear rates we expect in the rotating pipe exper-
iment. The Carreau-Yasuda fits do not require a limited
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TABLE I: Power-law model variables used to fit the
measured rheology.

Model
number CXG

Model variables
k(Pa.sn) nPL

PL 1 0.10 0.09 0.58
PL 2 0.12 0.13 0.55
PL 3 0.15 0.23 0.46

TABLE II: Carreau-Yasuda model variables used to fit
the measured rheology.

Model
number CXG

Model variables
µ0(Pa.s) µ∞(Pa.s) λ(s) a nCY

CY 1 0.10 0.221 0.000400 5.26 0.693 0.492
CY 2 0.12 0.510 0.00224 1.84 0.387 0.696
CY 3 0.15 1.89 0.0029 3.50 0.342 0.804

range of shear rates due to their asymptotic nature. This
allows the fits to follow the measured rheology of the mix-
ture reasonably at all values of shear rate.

Estimating the critical overlap concentration c∗ from
the intrinsic viscosity [η] determined from capillary u-
tube viscometer measurements gives c∗ ≈ 1/[η] ≈
530ppm. Extensional rheology measurements could not
be obtained for the xanthan gum at these concentra-
tions using the CaBER technique, presumably as a con-
sequence of its rigid structure and therefore low Trouton
ratios. Measurements of the first normal-stress differ-
ence for these fluids were also below the sensitivity of
our TA rheometer and confirm the suggestion that the
fluid is only weakly-elastic. This lack of data prevents
the accurate determination of Deborah (De, based on
the product of a non-linear relaxation time and an in-
verse timescale for the flow, i.e. the rotational speed of
the pipe) or Weissenberg numbers (Wi, based on the
product of non-linear relaxation time and a character-
istic shear rate) for our fluid flows. However, based on
estimates of the first normal stress differences measured
for 0.25% xanthan gum34, we would estimate maximum
values on the order of 0.1 for both De and Wi confirming
that we are probing shear-thinning effects alone largely
unaffected by viscoelasticity. We note that all real fluids
do contain some level of elasticity however.

III. NUMERICAL METHOD

To compute the flow field within the rotating pipe
flow we make use of the fact that the flow is lami-
nar, incompressible, steady and axisymmetric (i.e. two-
dimensional). The governing equations are then those
expressing conservation of mass (equation 1) and mo-
mentum (equation 2), where u represents the vector ve-
locity, p the static pressure, ρ the fluid density and µ its
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FIG. 2: Examples of rheological measurements (at
24◦C) of the dependence of shear viscosity on shear rate
for 0.10% xanthan gum (blue triangles) with PL 1 fit
(blue dashed line) and CY 1 fit (blue continuous line);
0.12% xanthan gum (red circles) with PL 2 fit (red
dashed line) and CY2 fit (red continuous line); and

0.15% xanthan gum (black squares) with PL 3 fit (black
dashed line) and CY 3 fit (black continuous line)

dynamic viscosity.

∇ · u = 0 (1)

ρ (u ·∇u) = −∇p+∇ · µ∇u (2)

The set-up of the numerical simulations follows the
Newtonian work of Dennis, Seraudie & Poole (2014)22

precisely, except for the implementation of the power-law
model for viscosity. Here, we only outline the main as-
pects of the simulation and the reader is directed to that
work for full details of the method and the mesh conver-
gence study. The appropriate boundary conditions for
this problem are axisymmetric conditions on the centre-
line, fixed velocity conditions on the pipe walls, uniform
flow velocity at the inlet far upstream of the junction
and the outlet boundary condition far downstream of the
junction. To ensure fully-developed flow at the junction,
the length of each pipe (i.e. upstream and downstream
of join) was set to 50 pipe radii35. We used Fluent (in
ANSYSWorkBench 14.5) to solve Equations 1 and 2 sub-
ject to these boundary conditions. All calculations were
carried out with a 80 × 3200 mesh (i.e. 256,000 cells)
corresponding to mesh M3 from22, which was found to
provide grid independent results.

A. Power-law model

To simulate both non-Newtonian shear-thinning and
shear-thickening behaviour we use a power-law model of
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the form given in equation 3 where µPL is the dynamic
viscosity of the fluid (units Pa.s), k is the flow consis-
tency index (kg · sn−2/m), γ̇ is a shear rate magnitude
(1/s) and nPL is the power law index.

µPL = kγ̇nPL−1 (3)

The amount of shear-thinning/thickening is defined by
the power law index (nPL) where nPL < 1 for a shear-
thinning fluid, nPL > 1 for a shear-thickening fluid and
nPL = 1 for a Newtonian fluid. The larger the devia-
tion from nPL = 1 the more shear-thinning/thickening
the fluid is. Minimum and maximum limits on the vis-
cosity are imposed as 10−5Pa.s and 105Pa.s respectively.
We confirmed that the results are insensitive to further
increases in these limits.

B. Carreau-Yasuda model

A Carreau-Yasuda model was also used to simulate
non-Newtonian shear-thinning behaviour, allowing a di-
rect comparison to be made between the Carreau-Yasuda
and power-law models in relation to the experimental re-
sults. The Carreau-Yasuda model is given in equation 4
where µCY is the dynamic viscosity of the fluid, with µ0

being the dynamic viscosity at zero shear rate and µ∞
being the dynamic viscosity at infinite shear rate (units
Pa.s), γ̇ is a shear rate magnitude (1/s) and λ (s), a and
nCY are model parameters.

µCY = µ∞ +
µ0 − µ∞

(1 + (λγ̇)
a
)

nCY
a

(4)

The model is comprised of two constants (µ0 and µ∞)
connected by a power-law where, a affects the shape of
the transition region, λ is a time constant that determines
where the change from constant to power-law occurs and
nCY describes the slope of the power-law. The amount of
shear-thinning/thickening can then therefore be defined
by the model parameter (nCY ) where nCY > 0 for a
shear-thinning fluid, nCY < 0 for a shear-thickening fluid
and nCY = 0 for a Newtonian fluid. The larger the devi-
ation from nCY = 0 the more shear-thinning/thickening
the fluid is.

C. Simplified Carreau model

To allow another direct comparison to the power-law
model for a range of both shear-thinning/thickening flu-
ids, without a fit to the measured rheology, a simpli-
fied Carreau model, of the form given in equation 5, was
matched to the power-law, of the form given in equation
3. In this simplified Carreau model µSC is the dynamic
viscosity of the fluid, with µ0 being the dynamic viscosity
at zero shear rate, γ̇ is a shear rate magnitude (1/s) and
λSC and nSC are model parameters.

µSC = µ0[1 + (λSC γ̇)
2
]
nSC−1

2 (5)

The matching procedure used to allow this comparison
is stated by Escudier, Oliveira & Pinho (2002)36. The
equations 6 and 7 show how the power-law and simplified
Carreau models are related36.

k = µ0(λSC
nSC−1) (6)

nSC = nPL (7)

The models are matched such that the amount of shear-
thinning/thickening for both models is defined by the
power law index (nPL)

36. For the results presented here,
we have used µ0 = 2 Pa.s and λ = 1 s for all the simpli-
fied Carreau models. We have briefly tested the effect of
Carreau number (Cu = λSC γ̇)

30 and found that the Re
trends we discuss are dominant over the effect of Car-
reau number for the fluids modelled. A comparison of
the power-law and matched Carreau models is shown in
figure 3. This demonstrates the agreement between the
models in the power-law region, but a diversion as the
simplified Carreau models asymptote to a constant (µ0)
at low shear rates, which is more representative of the
real fluid rheology.
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FIG. 3: Simplified Carreau models with corresponding
matched power-law models (dashed lines) for power-law

indices in the range 0.4–1.6.

IV. DEFINITION OF REYNOLDS NUMBER

For a Newtonian fluid flow through a pipe, the
Reynolds number (Re) is given in equation 8. Calcu-
lation of Re is straightforward given the material prop-
erties of the fluid, the pipe geometry and the mass flow
rate.

Re =
ρUD

µ
(8)
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For a non-Newtonian fluid, specifically a shear-
thinning or shear-thickening fluid, the value of viscosity
used to calculate Re is not straightforward as the vis-
cosity varies throughout the flow field. Employing the
power-law model described in section IIIA, the Reynolds
number can be defined as in equation 9, which is a com-
bination of equations 3 and 8;

Re =
ρUD

kγ̇n−1
. (9)

To compute this Re it is necessary to define a char-
acteristic shear rate of the flow. For pipe flow this can
be roughly estimated, based on scaling arguments and
characteristic values, as the gradient of the axial velocity
as given in equation 10, where r is radial coordinate and
R = D/2 is the radius of the pipe:

γ̇ =
dVx

dr
≈ U

R
. (10)

However, for the rotating pipe flow under considera-
tion here there is an alternative definition based on the
rotation rate of the pipe as given in equation 11,

γ̇ =
dVθ

dx
≈ ωR

R
= ω, (11)

where Vθ is the azimuthal velocity and ω is the rotational
speed of the pipe. Here we are approximating the shear
rate as the change in azimuthal velocity in the axial di-
rection from Vθ ≈ ωR in the rotating (upstream) pipe to
zero in the stationary (downstream) pipe over an axial
distance of order R.

Given the estimates of these two shear rates in equa-
tions 10 and 11, and noting that the swirl ratio is defined
as Γ = ωR/U , it is clear that the shear rate based on ro-
tation will be greater than the shear rate based on axial
flow by a factor equivalent to the swirl ratio (Γ). As Γ
is necessarily high in order for breakdown to occur, we
might expect the shear rate based on rotation to be more
relevant to the vortex breakdown phenomenon.

Using a characteristic shear-rate defined based on the
axial flow (equation 10) the Reynolds number Rex can
be defined as,

Rex =
ρUD

k(U/R)n−1
=

2ρU2−nRn

k
. (12)

Alternatively, using a characteristic shear-rate based
on the rotational velocity (equation 11), the Reynolds
number Reω can be defined as,

Reω =
ρUD

kωn−1
=

ρUD

k(UΓ/R)n−1
=

2ρU2−nRn

k
Γ1−n.

(13)
Equations 12 and 13 show that these two Reynolds

numbers (Rex and Reω) are directly related to each other
through the swirl ratio and the power-law index:

Rex = ReωΓ
n−1. (14)

The definition of the Reynolds numbers presented
above are only valid for the power-law model. The
Carreau-Yasuda and simplified Carreau models require
somewhat different Reynolds number expressions. This
was done by using the same estimations for γ̇ (shear
rate magnitude) and procedure as presented above, giv-
ing equation 15 for the Carreau-Yasuda model,

Rex(CY ) =
2ρUR

µ∞ + µ0−µ∞
(1+(λU/R)a)nCY /a

(15)

and equations 16 and 17 for the simplified Carreau,

Rex(SC) =
2ρUR

µ0[1 + (λSCU/R)
2
]
nSC−1

2

(16)

Reω(SC) =
2ρUR

µ0[1 + (λSCUΓ/R)
2
]
nSC−1

2 .
(17)

As we have two definitions of Re based on the two dif-
ferent estimates of shear-rate, we also have two differ-
ent Carreau numbers for the simplified Carreau model as
given in equations 18 and 19,

Cux = λ
U

R
(18)

Cuω = λω. (19)

V. COMPARISON OF EXPERIMENTAL AND
NUMERICAL RESULTS FOR A SHEAR-THINNING
FLUID

Experimental, numerical and analytical results for vor-
tex breakdown in swirling pipe flow have only previously
been compared for a Newtonian fluid22. It was found
that the agreement was generally good between the ex-
perimental and numerical methods and so the same tech-
niques have been utilised in this study. However, as
only Newtonian fluids were considered previously, there
has been no validation in this configuration of either
model we employ in our simulations. In this section we
compare the results from an experiment using a shear-
thinning fluid and the simulations using both power-law
and Carreau-Yasuda models.

A. Axial length of recirculation ‘bubble’

The axial length of the recirculation bubble has been
used to compare the results from experiments and nu-
merical studies previously22 and we do the same here,
but now for a shear-thinning fluid. Figure 4 shows how
the recirculation bubble increases in axial length as the
Reynolds number (Rex) is increased for a shear-thinning
fluid. This is a similar trend as that found in the case
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of a Newtonian fluid22. Figure 4 demonstrates that the
power-law model provides a reasonably accurate repre-
sentation of the bubble size when compared to the exper-
imental results for xanthan gum. And, not surprisingly,
the Carreau-Yasuda model provides a slightly more ac-
curate representation of the bubble size for all Reynolds
numbers. The trend of increasing length with Rex is
captured well and the downstream extent of the bubble
is captured particularly well for both models.
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FIG. 4: Variation of recirculation bubble length with
Reynolds number (Rex) for CXG = 0.12% (solid blue
lines), PL 2 (dashed red lines), CY 2 (dashed green

lines) and a Newtonian reference (dashed black lines).
Γ = 12 in all cases.

The upstream extent of the bubble is predicted to be
larger for both of the simulated models, although the
Carreau-Yasuda model provides a better comparison to
the experimental results than the power-law model. Be-
cause of this, it could be determined that the power-law
model is over estimating the upstream extent of the bub-
ble. However, this upstream effect is also present in the
Carreau-Yasuda results and can also seen in the Newto-
nian results22, so it is not solely due to the power-law
model and is probably also a consequence of the visual-
isation technique used to determine these experimental
values.

It can also be seen in figure 5 that there is a linear
increase of bubble length (xL) with Rex in the experi-
ments as well as both the viscosity models. The gradient
is very similar in all three cases (i.e. the trend with Rex
is captured) with the difference being in the value of the
absolute length of the bubble. This confirms the use of
the Carreau-Yasuda model only provides a slightly more
accurate representation of the length of the recirculation
bubble and the power-law model is quite representative
of the experimental results. For reference, the following
equations (20 to 22) show the linear functions of the lines

presented in figure 5 for Rex > Rec.
For CXG = 0.12,

xL = 0.44Rex − 0.14; (20)

for PL2,

xL = 0.43Rex − 0.36; (21)

for CY2,

xL = 0.43Rex − 0.17; (22)

and for the Newtonian reference shown on figure 5,

xL = 0.18Rex − 0.31. (23)
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FIG. 5: Linear increase of recirculation bubble length
(xL) with Reynolds number (Rex) for CXG = 0.12%

(blue squares), PL 2 (red circles), CY 2 (green
triangles) and a Newtonian reference (black stars).
Lines are linear fits to the data. Γ = 12 in all cases.

All three functions for the non-Newtonian fluid (ex-
perimental results, and power-law and Carreau-Yasuda
models) are shown to have very similar gradients sug-
gesting that all three show a similar rate of growth of the
recirculation bubble with axial Reynolds number. It can
also be seen that the gradient for the Newtonian reference
is a lot lower. Therefore, the rate of growth of the recircu-
lation bubble with Rex is higher for shear-thinning fluids
than Newtonian fluids. However, as will be discussed in
§VI, Rex is not the most appropriate scaling for this flow
and we show these Rex trends to compare the perfor-
mance of the different viscosity models rather than any
underlying physical significance.
The effect of varying the swirl ratio at a given Rex is

shown in figure 6. It is clear that both the power-law and
Carreau-Yasuda models provide a reasonably good pre-
diction of the length of the recirculation bubble and also
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predict the correct trend with Γ. The Carreau-Yasuda
provides results that are marginally closer to the experi-
ments than the power-law in most cases. However, at the
downstream end of the bubble this is not always true, al-
though the differences are in fact very small.

−4 −2 0 2 4

Γ=11

Γ=12

Γ=13

Pipe radii downstream

FIG. 6: Variation of recirculation bubble length with
swirl ratio (Γ) for CXG = 0.15% (solid blue lines), PL 3

(dashed red lines) and CY 3 (dashed green lines) .
Rex = 8 in all cases. For this system, the critical swirl

(Γc) = 8.53 (presented at 3 s.f.).

The effect of varying the amount of shear-thinning (or
the power-law index, n) on the recirculation length is
shown in figure 7 for two Reynolds numbers (Rex). It is
clear, even over this rather limited range of n, that the
length of the bubble increases as the amount of shear-
thinning increases (n decreases). The range of n used
here is severely limited by the properties of the xanthan
gum solutions it is possible to create and use in the exper-
iment. There are no such limitation for the simulations
and in §VI we numerically examine a much wider range
of n. What is particularly notable in figure 7 is that for
CXG = 0.15% (n = 0.46), i.e. the most shear-thinning
solution, the upstream length of the recirculation region
seen in the experiment is longer than in the correspond-
ing simulations. This is the opposite to what was seen
observed at the two higher values of n (as well as figure 7).
These results indicate that the variation of bubble length
with shear-thinning is more dramatic in the experiment
than is predicted by the simulations. This could be due
to the weak effects of elasticity induced by the stagna-
tion point here, i.e. large fluid residence times allowing
significant strain to accumulate.
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FIG. 7: Variation of recirculation bubble length with
percentage of xanthan gum (solid blue lines),

corresponding fitted power-law model (dashed red lines)
and fitted Carreau-Yasuda model (dashed green lines).

Γ = 12 in all cases.

B. Comparing power-law and Carreau-Yasuda models

Since the results above have shown that the use of
the Carreau-Yasuda model has only had a minimal effect
on the accuracy when representing the length of the re-
circulation bubble compared to the power-law model, a
closer comparison was made between the two models to
see how the pressure and viscosity of the flow are affected
and how these properties influence each other. In figure
8 we plot the variation of viscosity along the pipe axis
predicted by the Carreau-Yasuda and power-law models.
For the most part it can be seen that the viscosities of the
two models are in very good agreement with each other,
showing very similar values. The viscosities start to de-
viate from each other downstream of the recirculation
bubble where all power-law model viscosities increase to
the maximum of 105 Pa.s (if this maximum had not been
set the viscosities would keep increasing to infinity for all
Rex), whereas all Carreau-Yasuda model viscosities in-
crease to an asymptote (µ0). This shows the well-known
fundamental difference between the two models with the
power-law model viscosity increasing with a power law
to infinity as γ̇ → 0 and the Carreau-Yasuda model vis-
cosity increasing with a power law as γ̇ decreases before
asymptoting to µ0 as γ̇ → 0.

The region of recirculation is marked on figure 8 and it
is evident that the viscosity within the bubble is virtually
identical for the two models. The large deviation is seen
downstream of the vortex breakdown region where the
pipe is not rotating (and the shear rate on the centreline
is obviously very low). The fact that the viscosity is very
similar within the bubble itself demonstrates why the
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predictions of bubble length discussed previously are very
similar between the two viscosity models. The main dif-
ferences in viscosity are occurring outside of the region of
primary interest, downstream of the vortex breakdown.
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FIG. 8: The axial variation of dynamic viscosity along
the pipe axis, comparing PL2 (dashed lines) and CY2
(solid lines) models for: Rex=3 (purple), Rex=5 (blue),
Rex=7 (red), Rex=9 (green) and Rex=11 (cyan), with
the ‘o’ (PL2) and ‘x’ (CY2) markers show the extent of

the recirculation bubble . The reference dynamic
viscosity is the dynamic viscosity on the pipe axis at the
join of the pipes, i.e. at x/R = r/R = 0. Γ = 12 in all

cases.

The variance of pressure along the pipe axis and wall is
shown in figures 9 and 10 respectively. It can be seen that
both models produce very similar flow patterns overall.
The region where the recirculation bubble occurs is where
the models are in the closest agreement with each other
and upstream or downstream of this region shows a slight
change between the two models. At the location in the
flow where the viscosities start to diverge (seen in figure
8) it is shown in figures 9 and 10 that this has no impact
on the pressure difference along the pipe axis or wall.
This, along with the results shown in §VA, suggests that
although the use of the power-law model compared to the
Carreau-Yasuda model has implications on the viscosity
of the flow downstream of the recirculation bubble, this
has little impact on the length of the recirculation bubble,
pressure field or flow pattern as a whole.

The fact that there is no difference in the pressure fields
given by the two different viscosity models is particularly
important as the vortex breakdown is induced by pres-
sure differences set up by the swirling flow. As figure 9
amply demonstrates, the pressure gradient on the axis
is inverted a few radii upstream of the pipe join (due to
the swirling flow) and therefore induces the backflow in
this region that manifests itself as the vortex breakdown
along the pipe axis. As the swirl is removed downstream
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FIG. 9: The axial variation of pressure along the pipe
axis, comparing a Newtonian reference line Rex = 7

(black dotted and dashed line), PL2 (dashed lines) and
CY2 (solid lines) models for: Rex=3 (purple), Rex=5
(blue), Rex=7 (red), Rex=9 (green) and Rex=11

(cyan), with the ‘o’ (PL2) and ‘x’ (CY2) markers show
the extent of the recirculation bubble. The reference
pressure is the pressure on the pipe axis at the join of
the pipes, i.e. at x/R = r/R = 0. Γ = 12 in all cases.

of the join the pressure gradient returns to that expected
in pressure-driven constant area pipe flow and the break-
down disappears. Along the wall, figure 10 shows how
the flow is accelerated around the bubble in order to com-
pensate for the blockage effect of the recirculation region.
The fact that the power-law model captures these varia-
tions in pressure gradient demonstrates why the predic-
tions it gives are quite good for this fluid in this type of
flow. It is noted that the viscosity of our experimental
fluid fits a power law well over the shear rate range pre-
dominantly seen in this flow. For fluids that do not share
this characteristic the above conclusions do not necessar-
ily apply.

C. Critical swirl ratio

The critical swirl ratio (Γc) is defined as the lowest
swirl ratio that causes a stagnation point to occur in the
flow at a given Re, (i.e. the minimum swirl ratio required
to induce vortex breakdown). This definition is the same
as that used previously22,23. Figure 11 shows a compari-
son of the critical swirl ratio required for a 0.10% solution
of xanthan gum and the corresponding numerical simu-
lation using a power-law and Carreau-Yasuda models for
viscosity. For the experiment we have included Γc for
both “onset” and “extinction” at each Rex. These terms
are used to differentiate between when vortex breakdown
is first observed as the swirl ratio is increased (“onset”)
and when vortex breakdown disappears as the swirl ratio
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FIG. 10: The axial variation of pressure along the pipe
wall, comparing a Newtonian reference line Rex = 7

(black dotted and dashed line), PL2 (dashed lines) and
CY2 (solid lines) models for: Rex=3 (purple), Rex=5
(blue), Rex=7 (red), Rex=9 (green) and Rex=11

(cyan), with the ‘o’ (PL2) and ‘x’ (CY2) markers show
the extent of the recirculation bubble. The reference
pressure is the pressure on the pipe axis at the join of
the pipes, i.e. at x/R = r/R = 0. Γ = 12 in all cases.

is decreased (“extinction”)22. This is a measure of the
uncertainty in visualising the vortex breakdown and is
not to be taken as an indication of hysteresis (there is no
hysteresis in the simulations) as previously discussed22.
Figure 11 shows that the agreement between the experi-
mental and numerical Γc is generally good for this range
of Rex as the majority of the predicted Γc lie within
the uncertainty of the visualisation (i.e. between onset
and extinction). This corresponds well (and is arguably
superior) to the equivalent comparison for a Newtonian
fluid22 demonstrating that the power-law model is a good
approximation to the behaviour of the xanthan gum for
the purposes of predicting the swirl ratio at which break-
down will first occur.

The limited number of simulations conducted with the
Carreau-Yasuda model are found to be in almost com-
plete agreement with the power-law model (hence why
we only did a limited number). This reinforces the argu-
ments discussed above regarding the ability of the power-
law model to accurately predict the pressure gradient (for
the fluid studied) and this being the main driver of the
vortex breakdown. It is therefore to be expected that the
critical swirl ratio (effectively the critical pressure ratio)
is accurately predicted.
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FIG. 11: Variation of Reynolds number (Rex) with
critical swirl ratio for experiments with 0.10% xanthan
gum (shown in blue), PL 1 (red stars) and CY 1 (green

crosses).

VI. THE EFFECT OF SHEAR-THINNING AND
SHEAR-THICKENING

The length of the recirculation region was seen to vary
with the amount of shear-thinning in figure 7. However,
these results were only for a small range of shear-thinning
fluids (which could be easily accessed in the experimen-
tal facility). Having shown a simple power-law model
captures the experimentally observed phenomena well in
section V we now present the effect of varying nPL in
the simulations for both power-law and simplified Car-
reau models over a much wider range, including shear-
thickening fluids.
Figure 12 shows streamlines for a range of values of

power-law index (0.3 < nPL < 1.6) at Rex = 10,
Γ = 12. It is immediately obvious that the trend for
the bubble length to increase with the amount of shear-
thinning previously identified in figure 7 applies across
this wide range of nPL. As nPL decreases the length of
the breakdown bubble greatly increases in the axial di-
rection, extending to several pipe radii in the most shear-
thinning cases. The width of the bubble also increases,
but only marginally. It is of course severely constrained
by the wall of the pipe. For values of nPL greater than
unity, i.e. shear-thickening fluids, the size of the recircu-
lation bubble decreases significantly when compared to
the Newtonian flow. As nPL is increased the recircu-
lation bubble becomes very small and for nPL = 1.6 in
figure 12 it actually disappears, meaning breakdown does
not occur for nPL = 1.6, Rex = 10 and Γ = 12.

For the Newtonian case (nPL = 1), the power-law
and simplified Carreau models are indistinguishable as
is to be expected, but as the fluid becomes more shear-
thinning or thickening differences between the two mod-
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els become apparent. The power-law model shows an
increased recirculation bubble length compared to the
simplified Carreau model (with a modest Cux = 1) as
the fluid becomes more shear-thinning, whereas, for the
shear-thickening case the simplified Carreau model shows
an increased recirculation bubble length compared to the
power-law model.

It is important to note that in figure 12 we have pre-
sented results with the Reynolds number using a viscosity
based on the axial shear rate (Rex). In §IV we explained
that the Reynolds number could also be defined using a
viscosity based on the rotational shear rate (Reω). In fig-
ure 13 we present the equivalent streamlines to those in
figure 12, but with constant Reω instead of constant Rex.
(Rex actually varies from Rex = 1.756 for nPL = 0.3 to
Rex = 44.41 for nPL = 1.6.) The large variation in the
size and shape of the breakdown bubble present in figure
12 is not seen in figure 13. In fact, the flow is very simi-
lar to that of a Newtonian fluid nPL = 1 for all values of
nPL. This demonstrates that the Reynolds number scal-
ing based on rotational shear rate is perhaps a more ap-
propriate scaling for this flow and can be used to largely
“eliminate” the effect of shear-thinning/thickening (al-
though some minor differences in bubble topology can
be observed in figure 13). It is also apparent that when
the viscosity in the Reynolds number is based on rota-
tional shear rate there is no discernible difference between
the power-law and simplified Carreau models (noting also
that Cuω = 12).

The results for only one swirl ratio are presented in
figure 13. However, simulations have been conducted for
further swirl ratios (up to Γ = 20, not shown) and in
each case it was found that this new scaling could be
used to largely eliminate the effect of the shear-varying
nature of the fluid. This is a very powerful result as it
allows us to predict the size and shape of the breakdown
bubble for any shear-varying fluid as it will be the same
across all values of nPL provided that Reω is matched.
We do note this collapse with Reω shown in figure 13 is
not perfect and some small variation in the shape of the
bubble with nPL is noticeable, but when compared to the
huge variation with nPL seen in figure 12 the differences
are minor.

A. Critical swirl ratio

The swirl ratio required to induce vortex breakdown,
which was previously shown for a single power-law index
(nPL) in figure 11, is shown for a range of nPL in figure
14. The qualitative behaviour of the critical swirl ratio is
very similar across the range of nPL investigated, with all
appearing to approach a value of Γc = 8 at higher Rex.
There is a clear quantitative dependence of Γc on nPL,
with higher power-law indices requiring a higher swirl
ratio to induce vortex breakdown. This dependence is
not unexpected given the streamlines shown in figure 12.

As demonstrated in figure 13, the effect of nPL can be

largely removed by re-scaling using a Reynolds number
based on rotational shear rate (Reω). This re-scaling is
also found to be somewhat effective for critical swirl ratio
(Γc) as shown in figure 15. Each of the curves relating
Reω and Γc are seen to broadly collapse onto a single
curve (with some deviation at more extreme values of
nPL). This reinforces the power of this new scaling as the
swirl ratio required for vortex breakdown can now be eas-
ily predicted for any shear-thinning or shear-thickening
fluid. We have checked a selection of the critical swirl ra-
tios (at the extreme nPL values of 0.4 and 1.6) using the
simplified Carreau model (Cuω = 12). The results du-
plicate the power-law results, reinforcing the previously
stated assertion that there is little variation between the
power-law and simplified Carreau predictions of critical
swirl ratio. Equation 24 shows a function of critical swirl
ratio in terms of (Reω) which was found to represent the
relationship reasonably well.

ΓC =
−0.64 exp(−0.12Reω)

−0.04Re0.48ω

+ 8. (24)

We also attempted to collapse the results using a
Reynolds number where the viscosity is determined from
a shear rate formed from a combination of the axial and
rotating velocities. However, as the magnitude of the
axial velocity is small compared to the rotation at the
critical swirl ratio, no reasonable combination of these
two components improved the collapse.
Although there is a deviation from the master curve

(equation 24) at high and low values of nPL the imper-
fect collapse is good enough that this can be used as a
very simple way to predict the onset of vortex breakdown
for a wide range of fluids with shear-dependent viscos-
ity. It may therefore prove useful for designing swirling
flows in which vortex breakdown is either desired or to
be avoided.

VII. CONCLUSIONS

A combined numerical and experimental investigation
has shown the effect of variable shear viscosity on vortex
breakdown in rotating pipe flow. Experiments using a
shear-thinning fluid (0.46 < nPL < 0.58) have been con-
ducted in order to validate the simple power-law model
used for viscosity in the simulations. Agreement between
the experiments and simulations is good (to within the
accuracy of the experimental visualisations) for both the
size of recirculation bubble and the critical swirl ratio
required for the onset of vortex breakdown. A Carreau-
Yasuda model was also used for the shear-thinning fluid.
This showed good agreement between the experiments
and the simulations but produced similar results to the
power-law model simulations. Because of this there is lit-
tle benefit to using the Carreau-Yasuda model over the
power-law model for the shear thinning fluids and shear
rates investigated here.
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FIG. 12: Streamlines showing the variation of the extent of the breakdown bubble with (nPL), using power-law
(dashed red lines) and simplified Carreau models (continuous blue lines), for Rex = 10, Γ = 12 (and Cux = 1 for the
Carreau model). The bulk flow is from left to right. The lines shown perpendicular to the bulk flow represent the
axial extent of the recirculation region. For nPL = 1.6 vortex breakdown has not occurred at this Rex and Γ.
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FIG. 13: Streamlines showing the variation of the extent of the breakdown bubble with (nPL), using power-law
(dashed red lines) and simplified Carreau models (continuous blue lines), for Reω = 10, Γ = 12 (and Cuw = 12 for
the Carreau model). The bulk flow is from left to right. The lines shown perpendicular to the bulk flow represent

the axial extent of the recirculation region.
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FIG. 14: Variation of Reynolds number (Rex) with
critical swirl ratio using the power-law model for

power-law indices in the range 0.4–1.6.
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FIG. 15: Variation of Reynolds number (Reω) with
critical swirl ratio using the power-law model for

power-law indices in the range 0.4–1.6. a selection of
matched simplified Carreau results are included for

nPL = 1.6 (dark red ‘x’ markers) and nPL = 0.4 (dark
green ‘x’ markers). The function shown by the equation

24 is also presented (black line).

Power-law and simplified Carreau models were used
to investigate a wide range of fluids from very shear-
thickening (nPL = 1.6) to very shear-thinning (nPL =
0.3). A new scaling is proposed using a Reynolds number
with a viscosity based on a shear rate dependent on the
rotational speed of the pipe (rather than the bulk flow).
This scaling is found to collapse the results reasonably
well across all values of nPL, (i.e. shear-thinning and
shear-thickening behaviour) for the critical swirl ratio
and the size of the recirculation bubble, although some

subtle variation in flow topology and critical swirl ratio
remains for highly shear-varying fluids. Hence, it is pos-
sible to very easily predict (with reasonable accuracy) the
critical swirl ratio required to induce vortex breakdown,
and the size of the recirculation bubble, for any fluid with
shear-dependent viscosity.
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