104 research outputs found

    Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid

    Get PDF
    Maize was genetically engineered for the biosynthesis of the high value carotenoid astaxanthin in the kernel endosperm. Introduction of a β-carotene hydroxylase and a β-carotene ketolase into a white maize genetic background extended the carotenoid pathway to astaxanthin. Simultaneously, phytoene synthase, the controlling enzyme of carotenogenesis, was over-expressed for enhanced carotenoid production and lycopene ε-cyclase was knocked-down to direct more precursors into the β-branch of the extended ketocarotenoid pathway which ends with astaxanthin. This astaxanthin-accumulating transgenic line was crossed into a high oil- maize genotype in order to increase the storage capacity for lipophilic astaxanthin. The high oil astaxanthin hybrid was compared to its astaxanthin producing parent. We report an in depth metabolomic and proteomic analysis which revealed major up- or down- regulation of genes involved in primary metabolism. Specifically, amino acid biosynthesis and the citric acid cycle which compete with the synthesis or utilization of pyruvate and glyceraldehyde 3-phosphate, the precursors for carotenogenesis, were down-regulated. Nevertheless, principal component analysis demonstrated that this compositional change is within the range of the two wild type parents used to generate the high oil producing astaxanthin hybrid

    Waveforms of molecular oscillations reveal circadian timekeeping mechanisms

    Get PDF
    Circadian clocks play a pivotal role in orchestrating numerous physiological and developmental events. Waveform shapes of the oscillations of protein abundances can be informative about the underlying biochemical processes of circadian clocks. We derive a mathematical framework where waveforms do reveal hidden biochemical mechanisms of circadian timekeeping. We find that the cost of synthesizing proteins with particular waveforms can be substantially reduced by rhythmic protein half-lives over time, as supported by previous plant and mammalian data, as well as our own seedling experiment. We also find that previously-enigmatic, cyclic expression of positive arm components within the mammalian and insect clocks allows both a broad range of peak time differences between protein waveforms and the symmetries of the waveforms about the peak times. Such various peak-time differences may facilitate tissue-specific or developmental stage-specific multicellular processes. Our waveform-guided approach can be extended to various biological oscillators, including cell-cycle and synthetic genetic oscillators.Comment: Supplementary material is available at the journal websit

    Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis

    Get PDF
    The isolation and characterization of the phytoene synthase gene from the green microalga Chlorella zofingiensis (CzPSY), involved in the first step of the carotenoids biosynthetic pathway, have been performed. CzPSY gene encodes a polypeptide of 420 amino acids. A single copy of CzPSY has been found in C. zofingiensis by Southern blot analysis. Heterologous genetic complementation in Escherichia coli showed the ability of the predicted protein to catalyze the condensation of two molecules of geranylgeranyl pyrophosphate (GGPP) to form phytoene. Phylogenetic analysis has shown that the deduced protein forms a cluster with the rest of the phytoene synthases (PSY) of the chlorophycean microalgae studied, being very closely related to PSY of plants. This new isolated gene has been adequately inserted in a vector and expressed in Chlamydomonas reinhardtii. The overexpression of CzPSY in C. reinhardtii, by nuclear transformation, has led to an increase in the corresponding CzPSY transcript level as well as in the content of the carotenoids violaxanthin and lutein which were 2.0- and 2.2-fold higher than in untransformed cells. This is an example of manipulation of the carotenogenic pathway in eukaryotic microalgae, which can open up the possibility of enhancing the productivity of commercial carotenoids by molecular engineering

    A Late Form of Nucleophagy in Saccharomyces cerevisiae

    Get PDF
    Autophagy encompasses several processes by which cytosol and organelles can be delivered to the vacuole/lysosome for breakdown and recycling. We sought to investigate autophagy of the nucleus (nucleophagy) in the yeast Saccharomyces cerevisiae by employing genetically encoded fluorescent reporters. The use of such a nuclear reporter, n-Rosella, proved the basis of robust assays based on either following its accumulation (by confocal microscopy), or degradation (by immunoblotting), within the vacuole. We observed the delivery of n-Rosella to the vacuole only after prolonged periods of nitrogen starvation. Dual labeling of cells with Nvj1p-EYFP, a nuclear membrane reporter of piecemeal micronucleophagy of the nucleus (PMN), and the nucleoplasm-targeted NAB35-DsRed.T3 allowed us to detect PMN soon after the commencement of nitrogen starvation whilst delivery to the vacuole of the nucleoplasm reporter was observed only after prolonged periods of nitrogen starvation. This later delivery of nuclear components to the vacuole has been designated LN (late nucleophagy). Only a very few cells showed simultaneous accumulation of both reporters (Nvj1p-EYFP and NAB35-DsRed.T3) in the vacuole. We determined, therefore, that delivery of the two respective nuclear reporters to the vacuole is temporally and spatially separated. Furthermore, our data suggest that LN is mechanistically distinct from PMN because it can occur in nvj1Δ and vac8Δ cells, and does not require ATG11. Nevertheless, a subset of the components of the core macroautophagic machinery is required for LN as it is efficiently inhibited in null mutants of several autophagy-related genes (ATG) specifying such components. Moreover, the inhibition of LN in some mutants is accompanied by alterations in nuclear morphology

    Integrin-Specific Mechanoresponses to Compression and Extension Probed by Cylindrical Flat-Ended AFM Tips in Lung Cells

    Get PDF
    Cells from lung and other tissues are subjected to forces of opposing directions that are largely transmitted through integrin-mediated adhesions. How cells respond to force bidirectionality remains ill defined. To address this question, we nanofabricated flat-ended cylindrical Atomic Force Microscopy (AFM) tips with ∼1 µm2 cross-section area. Tips were uncoated or coated with either integrin-specific (RGD) or non-specific (RGE/BSA) molecules, brought into contact with lung epithelial cells or fibroblasts for 30 s to form focal adhesion precursors, and used to probe cell resistance to deformation in compression and extension. We found that cell resistance to compression was globally higher than to extension regardless of the tip coating. In contrast, both tip-cell adhesion strength and resistance to compression and extension were the highest when probed at integrin-specific adhesions. These integrin-specific mechanoresponses required an intact actin cytoskeleton, and were dependent on tyrosine phosphatases and Ca2+ signaling. Cell asymmetric mechanoresponse to compression and extension remained after 5 minutes of tip-cell adhesion, revealing that asymmetric resistance to force directionality is an intrinsic property of lung cells, as in most soft tissues. Our findings provide new insights on how lung cells probe the mechanochemical properties of the microenvironment, an important process for migration, repair and tissue homeostasis

    Allelic Variation, Alternative Splicing and Expression Analysis of Psy1 Gene in Hordeum chilense Roem. et Schult

    Get PDF
    Background: The wild barley Hordeum chilense Roem. et Schult. is a valuable source of genes for increasing carotenoid content in wheat. Tritordeums, the amphiploids derived from durum or common wheat and H. chilense, systematically show higher values of yellow pigment colour and carotenoid content than durum wheat. Phytoene synthase 1 gene (Psy1) is considered a key step limiting the carotenoid biosynthesis, and the correlation of Psy1 transcripts accumulation and endosperm carotenoid content has been demonstrated in the main grass species. Methodology/Principal findings: We analyze the variability of Psy1 alleles in three lines of H. chilense (H1, H7 and H16) representing the three ecotypes described in this species. Moreover, we analyze Psy1 expression in leaves and in two seed developing stages of H1 and H7, showing mRNA accumulation patterns similar to those of wheat. Finally, we identify thirtysix different transcripts forms originated by alternative splicing of the 59 UTR and/or exons 1 to 5 of Psy1 gene. Transcripts function is tested in a heterologous complementation assay, revealing that from the sixteen different predicted proteins only four types (those of 432, 370, 364 and 271 amino acids), are functional in the bacterial system. Conclusions/Significance: The large number of transcripts originated by alternative splicing of Psy1, and the coexistence of functional and non functional forms, suggest a fine regulation of PSY activity in H. chilense. This work is the first analysis of H. chilense Psy1 gene and the results reported here are the bases for its potential use in carotenoid enhancement in duru

    Sexual Relationships in Hispanic Countries: a Literature Review

    Get PDF
    This is a pre-print of an article published in Current Sexual Health Reports. The final authenticated version is available online at: https://doi.org/10.1007/s11930-020-00272-6Purpose of Review: Sexuality is a complex dimension for which culture seems to play an important role, particularly in countries that are more traditional. This review summarizes the knowledge about sexual relationships in Hispanic countries, considering sexual debut, attitudes, behaviors, and satisfaction. Recent Findings: In line with the literature reviewed, the sexual double standard seems to be continuing to influence sexual relationships. Some countries show more open expressions of sexuality based on the level of gender inequality or sexualized context, and within countries, variables such as religious commitment, family characteristics, and access to resources may play important roles in sexuality. Summary: Future research, policies, and interventions should consider these specific characteristics, including these forms of expression of sexuality, in the adjustment of cross-cultural and cross-national strategies

    Influence of Neonatal Hypothyroidism on Hepatic Gene Expression and Lipid Metabolism in Adulthood

    Get PDF
    Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregnant rats were given the antithyroid drug methimazole (MMI) from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH, and this was accompanied by significant catch-up growth. On PND80, significant reductions in body mass, tail length, and circulating IGF-I levels remained in CH rats. Conversely, the mRNA levels of known GH target genes were significantly upregulated. The serum levels of thyroid hormones, cholesterol, and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARα and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development plays on normal liver physiology in adulthood
    corecore