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ARTICLE

Waveforms of molecular oscillations reveal
circadian timekeeping mechanisms
Hang-Hyun Jo 1,2,3, Yeon Jeong Kim4, Jae Kyoung Kim 5, Mathias Foo6, David E. Somers4 &

Pan-Jun Kim7,8,9,10

Circadian clocks play a pivotal role in orchestrating numerous physiological and develop-

mental events. Waveform shapes of the oscillations of protein abundances can be infor-

mative about the underlying biochemical processes of circadian clocks. We derive a

mathematical framework where waveforms do reveal hidden biochemical mechanisms of

circadian timekeeping. We find that the cost of synthesizing proteins with particular wave-

forms can be substantially reduced by rhythmic protein half-lives over time, as supported by

previous plant and mammalian data, as well as our own seedling experiment. We also find

that previously enigmatic, cyclic expression of positive arm components within the mam-

malian and insect clocks allows both a broad range of peak time differences between protein

waveforms and the symmetries of the waveforms about the peak times. Such various peak-

time differences may facilitate tissue-specific or developmental stage-specific multicellular

processes. Our waveform-guided approach can be extended to various biological oscillators,

including cell-cycle and synthetic genetic oscillators.
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A variety of light-sensing organisms feature circadian
clocks, which generate endogenous molecular oscillations
with ~24 h periodicity and thereby control numerous

physiological and behavioral events1–4. Despite the identification
of biochemical mechanisms of circadian timekeeping in various
organisms5–9, our understanding of a design principle of these
clock mechanisms is far from complete. For example, the mam-
malian clock protein BMAL1 exhibits the abundance oscilla-
tions10, but these oscillations are not empirically required for the
generation of circadian rhythms per se, leaving their biological
roles still unclear11–13. As another example, the plant circadian
system involves post-translational regulations, such as the
degradation of PSEUDO RESPONSE REGULATOR 5 (PRR5)
protein by ZEITLUPE (ZTL) protein14,15; however, a previous
mathematical modeling suggests that such post-translational
interactions may not be strictly required for the formation of
the rhythms of any core clock components16, raising a question
about the fundamental role of these interactions.

The temporal trajectory of mRNA or protein concentration
exhibiting a circadian rhythm can be characterized by its shape or
waveform. A waveform of a protein expression profile, apart from
its few characteristic quantities (period, amplitude, and peak
phase)17–21, has long been underappreciated, but recently
recognized for its potential importance to clock function16,22,23. A
cuspidate waveform, which shows a notable acuteness around its
peak phase, was speculated to confer high-resolution timing of
downstream biological events around the peak phase16. In addi-
tion, according to plant–clock experiments, precise changes in the
waveform of GIGANTEA (GI) expression were sufficient to alter
hypocotyl growth as a downstream phenotype23. Moreover, a
specific circadian waveform seems crucial for the molecular
arithmetic processes involved in daily starch degradation24.
Although not in the circadian context, there are interesting
reports that modifying the waveform shape of neuro-stimulating
signals changes the efficiency of entraining the neural spiking
activities25. Nevertheless, the reverse yet complementary view of
the waveforms as a window to the inner biochemical mechanisms
of circadian clocks has not yet been taken into consideration for
systematic investigation.

Here, we report that the waveforms of clock protein profiles
can serve as an information source of previously underexplored,

biochemical mechanisms of circadian timekeeping. These
mechanisms can be exemplified by the above PRR5–ZTL inter-
action and BMAL1 abundance oscillation. Interestingly, our
waveform analysis predicts the considerable benefit of rhythmic
regulation of protein degradation in reducing the biosynthetic
cost of the waveform formation. Our mathematical framework is
supported by previous, as well as our new, experimental data.
This study can be extended to time-course data from various
biological oscillators, such as cell cycle systems and synthetic
genetic oscillators.

Results
Relationship between waveforms and cost. In a circadian sys-
tem, the dynamics of protein production governs the protein
concentration profile x(t) over time and thereby its waveform.
This dynamics can often be described by the following equation:

dxðtÞ
dt

¼ gðtÞ � rðtÞxðtÞ; ð1Þ

where g(t) and r(t) denote protein synthesis and degradation
rates, respectively, as depicted in Fig. 1a. g(t) is proportional to an
mRNA concentration and a translation rate. Protein degradation
with a rate r(t) is driven by post-translational mechanisms. An
oscillatory waveform of x(t) satisfies x(t)= x(t+ T) with T= 24 h
in diurnal light and dark cycles or T ≈ 24 h in constant light or
darkness. We stress that to maintain x(t)’s rhythmicity, g(t) or r(t)
should not remain constant but change over time. We will con-
sider the relationships between x(t), g(t), r(t), and later, the cost c
of protein production defined as

c � Δx
T

¼ gðtÞh i ¼ rðtÞxðtÞh i; ð2Þ

where Δx denotes the amount of proteins synthesized over the
period T, and 〈·〉 represents a time average, e.g.,
gðtÞh i � ð1=TÞR T

0 gðtÞdt. The equalities Δx/T= 〈g(t)〉 and
〈g(t)〉= 〈r(t)x(t)〉 are derived from Eq. (1) and x(t)= x(t+ T). In
other words, the cost c is defined as an average protein amount
synthesized per time, which is equal to an average protein amount
degraded per time. Because the circadian protein levels are per-
iodic over time, the proteins must be synthesized as much as they
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Fig. 1 Schematic diagrams of protein synthesis and turnover, and the resulting protein profiles in the circadian system. a Proteins are synthesized through
mRNA-to-protein translation, and destined for degradation. b Cyclic protein abundances are represented by waveforms. For each waveform, the arrow
indicates the point when R(t)= rmin in Eq. (4), and the shaded area corresponds to the interval between the steepest decline and the trough. The right
waveform (rmin≈ 0.69 h−1) has larger rmin than the left waveform (rmin≈ 0.30 h−1). For the definition of each notation in a, b, refer to Eq. (1)
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are degraded. We will show step by step that the biosynthetic cost
c of a protein waveform helps us decipher circadian degradation
mechanisms, mainly through the examples from the plant cir-
cadian system. Then, we will focus on other cases such as the
mammalian system.

In the case of the plant Arabidopsis thaliana, more than 20
clock genes have been discovered, and many of their mRNAs
undergo high-amplitude cycling in their abundance26,27. This
mRNA-level oscillation is a result of transcriptional control by
other clock gene products or by light signals. In the core plant
clock, the protein synthesis rate g(t), which is largely proportional
to the transcript concentration, would likely exhibit similar
oscillatory patterns. On the other hand, the characteristics of the
degradation rate r(t) remain rather elusive for plant clock
proteins, with only a limited number of experimental reports
28–32. Given the clearly time-dependent nature of the protein
synthesis rate, the degradation rate may not have to be also time-
dependent, as demonstrated by the previous mathematical
modeling16. Existing experimental data, nonetheless, indicate
that plant clock proteins often seem to have time-specific or
phase-specific degradation rates28–31, raising a question about the
beneficial effect of such rhythmic regulation of protein stability.
One study suggests that rhythmic degradation rates allow
nontrivial phase differences between transcript and protein
profiles18. However, given that the phases of transcript profiles
have relatively little functional significance, this previous study is
unlikely to be about biologically beneficial effects of the rhythmic
degradation rates.

We begin with the following observation: because x(t) ≥ 0, r
(t) ≥ 0, and g(t) ≥ 0, Eq. (1) leads to

rðtÞ � RðtÞ � max � x′ðtÞ
xðtÞ ; 0

� �
: ð3Þ

Note that the above inequality is always satisfied with arbitrary g
(t) ≥ 0. In other words, regardless of any specific form of a
transcript profile, the protein waveform x(t) imposes a stringent
constraint on the protein degradation rate r(t), through a lower
bound R(t) in Eq. (3). Therefore, a protein waveform itself can be
informative about the degradation rate.

Can waveforms indicate the effect of time-specific or phase-
specific degradation rates observed in empirical data? In order to
address this issue, we start with a contradictory scenario that the
degradation rate r(t) is constant over time, i.e., r(t)= r, and
examine its consequence. From Eq. (3),

r � rmin � max
t

RðtÞ: ð4Þ

Here, rmin, the strict lower bound of the degradation rate r, is
essentially determined only at a single time point t= tR with
tR � argmaxt RðtÞ (0 < tR ≤ T; throughout this work, time t in a
periodic function f(t)= f(t+ T) is represented by a unique value
within the range 0 < t ≤ T, unless specified). Because R(t)≡max
{−x′(t)/x(t), 0}, tR in practice would be a point that approaches
the trough of x(t) after the x(t)’s steepest decline (tR is
placed between ta and tb, where ta � arg maxtf�x′ðtÞg and
tb � arg mint xðtÞ, as shown in Fig. 1b). It is surprising that only
such a single time point, which will be henceforth referred to as
a single hotspot, plays a critical role in determining a range of
the constant degradation rate r. Typically, the sharper a waveform
x(t) is, the larger is rmin at the hotspot (Fig. 1b).

For each plant clock protein, we can calculate the lower bound
of its degradation rate, rmin. Figures 2a and 3a exhibit the
empirical PRR7 and PRR5 protein profiles in equal length
light–dark (12L:12D) cycles26. Here, time points in light–dark
cycles are counted from dawn (zeitgeber time). Using each

protein profile x(t), we obtain R(t) in Eq. (3), and then by Eq. (4),
rmin ≈ 0.88 h−1 for PRR7 (tR ≈ 21 h) and rmin ≈ 1.69 h−1 for PRR5
(tR ≈ 22.3 h), as in Figs. 2b and 3b. It means that if the
degradation rates are constant over time, the PRR7 and PRR5
half-lives at any given time points cannot be longer than ~47 and
~25 min, respectively. Provided that there are some erroneous
data points in the experimental profiles, the PRR7 and PRR5 half-
lives might be up to ~13 and ~51 min longer than the above,
respectively (Methods). In any cases, these half-lives appear to be
very short, compared to other documented protein half-lives33,34.
As previously mentioned, such a large degradation rate over the
entire course of a day is attributed to only a single hotspot t= tR,
under the assumption that the degradation rate is constant over
time.

Next, we demonstrate that such a constant and large
degradation rate can incur too large a cost of the protein
production. In Eq. (2), the cost c of protein production is defined
as an average protein amount synthesized per time, which is equal
to an average protein amount degraded per time. For a constant
degradation rate r(t)= r, one obtains from Eqs. (2) and (4)

c ¼ r xðtÞh i � cg � rmin xðtÞh i: ð5Þ

Therefore, given the protein profile x(t), the lower bound of the
cost c (i.e., cg) is directly proportional to rmin. PRR7 or PRR5,
which exhibits large rmin, would pay an accordingly high
production cost if the degradation rate is constant. More
specifically, from cT= Δx ≥ rminT〈x(t)〉, PRR7 and PRR5 must
be synthesized per day at least ~21 and ~41 times more than
actual protein level 〈x(t)〉s, respectively. In other words, these
protein syntheses are far excessive compared to the actual protein
abundance levels.

Time-dependent degradation rates and cost reduction. The
above excessive cost of protein production can be effectively
alleviated by time-varying degradation rates. If the degradation
rate r(t) is no longer constant, r(t) at t ≠ tR is allowed to be smaller
than rmin, as far as Eq. (3) is satisfied. This fact leads to the
possibility that the cost c can be lower than cg= rmin〈x(t)〉. Hence,
the cost can be reduced below the case of a constant degradation
rate. A time-dependent degradation rate is enabled in nature by
rhythmic post-translational regulation, such as PRR5 degradation
by ZTL in the plant clock. Both PRR5 and ZTL levels oscillate
over time, and this ZTL oscillation possibly contributes to the
rhythmic degradation rate of PRR5. Including PRR5, plant clock
proteins often seem to have phase-specific half-lives. These
experimental data allow us to evaluate our hypothesis that
rhythmic degradation rates help reduce protein production costs.

Before the calculation of the protein production costs to
examine our hypothesis, we stress that all experimental degrada-
tion rates of the plant PRR7 and PRR5 proteins and of the mouse
PERIOD2 (PER2) protein28–30,35 are found to satisfy the
fundamental relation r(t) ≥ R(t) in Eq. (3) (see Figs. 2b, 3b,
and 4b). PER2 is an essential component of the mammalian
clock10,35–38, and its synthesis and turnover dynamics approxi-
mately follows Eq. (1), thereby satisfying Eq. (3). To further test
the validity of Eq. (3), we performed a cycloheximide (CHX)
experiment and measured the PRR7 half-life at a time point that
lacks preexisting half-life data (Fig. 2c, d and Methods). Again,
the PRR7 half-life at this time point (t= 18 h) from our own
experiment is in good agreement with Eq. (3) (Fig. 2b, c).
Integration of these new and previous experimental data offers a
rough estimate of protein production costs, as in the following
paragraphs.

Calculation of protein production cost c requires information
on both degradation rate r(t) and waveform x(t) over time, as c=
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〈r(t)x(t)〉 from Eq. (2). Because the degradation rate of each plant
clock protein is only known for at most a few time points as
presented above, we infer the rest degradation rates from those
scarce experimental data. For this purpose, we interpolate and
extrapolate the experimental degradation rate r(t)s based on the
formula from Eq. (1): r(t) ≈ [g(t)− x′(t)]/x(t). Here, the protein
synthesis rate g(t) can be written as g(t)= k(t)gm(t), where gm(t) is
an mRNA concentration and k(t) is an mRNA-to-protein
translation rate. We discard the temporal variation of k(t) and
take an approximation k(t) ≈ k. Note that experimental data of
both protein and mRNA profiles, x(t) and gm(t), are available
enough for a wide range of time in the cases of PRR7 and PRR5
(Figs. 2a, e and 3a, c). Using these data, one can estimate k and
therefore the protein degradation rate every time (see Methods).
Accordingly, Figs. 2f and 3d show the estimated degradation rates
of PRR7 and PRR5. Alternatively, considering the time-varying
nature of k(t) does not much affect our main results (Methods).
In addition, we estimate the degradation rate r(t) of PER2.
Experimental degradation rates of PER2 cover a relatively wide

range of time and are thus informative enough to envisage the
overall trend of r(t). Therefore, only based on these experimental
degradation rates and R(t), without mRNA profile data, we can
make a rough estimate of the PER2 degradation rate over the
entire circadian period, as demonstrated in Fig. 4c (Methods).

The estimated, phase-specific degradation rates of clock
proteins in Figs. 2f, 3d and 4c show the characteristic curves
that peak around the hotspots (t ≈ tR) and decline elsewhere.
These patterns are the hallmarks of the rhythmic degradation
rates that can reduce the protein production costs below the cases
of constant degradation rates; except for the hotspots that must
have large degradation rates (≥rmin) by Eq. (3), if degradation
rates remain small for most time, proteins do not have to be
much synthesized to compensate for the degradation (Eq. (2))
and hence the production costs will become reduced.

Using the above degradation rate curves of several clock
proteins, we now compute the actual protein production cost c by
c= 〈r(t)x(t)〉 in Eq. (2). Compared to the cases of constant
degradation rates, the PRR7, PRR5, and PER2 production costs
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Fig. 2 PRR7 in the plant clock. For the definition of each notation, refer to Eqs. (1), (3), (4) and (18). a Existing experimental data of PRR7 protein levels (x
(t), filled circles; normalized by the peak level of their spline curve)28. b R(t) (red solid line; calculated from x(t) in a), rmin (gray solid line), and experimental
r(t) values (circles). The vertical axis unit is h−1. The value of r(t) at t= 18 h is from our own experimental data in c. The rest r(t) values in b are from
previous experimental data30. In agreement with Eq. (3), there exists no r(t) smaller than R(t). c Our experimental measurement of PRR7 levels after CHX
treatment at t= 17 h. d Similar to c, but without CHX treatment. In c, d, PRR7 levels are normalized to the levels at t= 17 h. Data points were obtained from
three biological repeats. In c, considering a lag time for the full effect of CHX, an exponential fit (gray solid line) was made from t= 18 h, and then r(t)≈
0.45 ± 0.11 h−1 (avg. ± s.d.) at t= 18 h in b was obtained (this standard deviation of r(t) does not much change the cost reduction in Table 1, because it
leads to (cg− c)/cg≈ 0.68–0.73); an exponential fit from t= 17 h also supports Eq. (3) (Supplementary Fig. 2). Control PRR7 levels at and after t= 18 h in
d, when averaged over three repeats at each time point and then rescaled together, are almost identical to x(t) in a. e Existing experimental data of PRR7
mRNA levels (gm(t), filled circles; normalized by the peak level of their spline curve)27. f Estimated r(t) over time (green dashed line; green circles for direct
calculation from experimental r(t), x(t), and gm(t) using Eqs. (18)–(20) with constant k), along with rmin in b. The vertical axis unit is h−1. All experimental
data here pertain to 12L:12D cycles, and white and black segments in a, e correspond to light and dark intervals, respectively
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indeed decrease by at least ~70%, ~83%, and ~52%, respectively,
as summarized in Table 1. If we consider a possible deviation of
the degradation rate in Fig. 2c, the PRR7 production cost
decreases by ~68% to ~73% (Fig. 2). Interestingly, in the case of
alga Ostreococcus tauri, rhythmic protein degradation is known to
be very crucial for circadian timekeeping39. For its clock proteins
CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and TIMING
OF CAB EXPRESSION 1 (TOC1), the full time series of
experimental r(t) is available39, and our analysis suggests that
the rhythmic r(t) saves ~30% and ~41% of the CCA1 and TOC1
production costs, respectively (Methods). These results well
support our hypothesis that rhythmic control of clock protein
half-lives is beneficial to the cost reduction of protein production.
This cost saving effect would be valid even if other benefits from
the rhythmic half-lives are not clear. We thus predict the
statistical tendency that the sharper a waveform is at the hotspot
(i.e., the larger is rmin, and therefore is cg), the more likely a
protein half-life is to be phase-specific.

Enigmatic elements of animal circadian systems. Thus far, we
have investigated circadian dynamics driven by protein synthesis
and degradation in Eq. (1). We now discuss another class of
circadian dynamics with Eq. (8) below, which is crucial for
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Fig. 4 PER2 in the mammalian clock. For the definition of each notation, refer to Eqs. (1), (3) and (4). a Existing experimental data of PER2 protein levels
(x(t), normalized by the peak level; moving window average of experimental data)35. b R(t) (red solid line; calculated from x(t) in a), rmin (gray solid line),
and empirical r(t) values (circles). The vertical axis unit is h−1. The r(t) values are from previous experimental data35. In agreement with Eq. (3), there
exists no r(t) smaller than R(t). c Estimated r(t) over time (green dashed line; green circles for experimental r(t) data in b), along with rmin in b. The vertical
axis unit is h−1
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Fig. 3 PRR5 in the plant clock. For the definition of each notation, refer to Eqs. (1), (3), (4) and (18). a Existing experimental data of PRR5 protein levels (x
(t), filled circles; normalized by the peak level of their spline curve)26. b R(t) (red solid line; calculated from x(t) in a), rmin (gray solid line), and empirical r
(t) values (circles). The vertical axis unit is h−1. The r(t) values are from previous experimental data29, 30. In agreement with Eq. (3), there exists no r(t)
smaller than R(t). c Existing experimental data of PRR5mRNA levels (gm(t), filled circles; normalized by the peak level of their spline curve)27. d Estimated r
(t) over time (green dashed line; green circles for direct calculation from experimental r(t), x(t), and gm(t) using Eqs. (18)–(20) with constant k), along with
rmin in b. The vertical axis unit is h−1. All experimental data here pertain to 12L:12D cycles, except for r(t) at t= 19 h in b, which was collected from a
different light condition due to the scarcity of experimental data (Supplementary Methods). White and black segments in a, c correspond to light and dark
intervals, respectively

Table 1 Estimated values of rmin, cg= rmin〈x(t)〉, and c= 〈r(t)
x(t)〉 as well as cost reduction for PRR7, PRR5, and PER2

Protein rmin (h−1) cg (h−1) c (h−1) Cost reduction (%)

PRR7 0.88 0.40 0.12 ~70
PRR5 1.69 0.77 0.13 ~83
PER2 0.47 0.23 0.11 ~52

For the definitions of cg and c, refer to Eqs. (2) and (5). The cost reduction due to the time-
specific or phase-specific r(t) is defined as (cg− c)/cg. We here assume constant k in Eq. (18).
We treat x(t) as dimensionless through the normalization of x(t) by its peak value (Figs. 2a, 3a
and 4a), and thus units of rmin, cg, and c in the table are h−1. The cost reduction itself is not a
quantity affected by the normalization of x(t), and hence there is no loss of generality in its
values
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mammals and insects, but does not follow the underlying
mechanism of Eq. (1).

The core part of the mammalian clock harbors a transcrip-
tional/post-translational negative feedback loop10,35,36, which
involves transcription factors, CLOCK and BMAL1 proteins.
CLOCK–BMAL1 heterodimers activate the transcription of Per
and Cryptochrome (Cry) genes, and the encoded PER and CRY
proteins form PER–CRY complexes that are translocated to the
nucleus. In the nucleus, they interact with CLOCK–BMAL1
complexes to inhibit the CLOCK–BMAL1 transcriptional activ-
ities. These positive (CLOCK and BMAL1) and negative (PER
and CRY) arms constitute a negative feedback loop.

In the following equations, xA(t) and xI(t) represent the
concentrations of active and inactive CLOCK–BMAL1 complexes
in the nucleus, respectively, and y(t) represents the concentration
of nuclear PER–CRY complexes that are not binding to

CLOCK–BMAL1 complexes:

dxAðtÞ
dt

¼ ~αðtÞ þ k1xIðtÞ � kyðtÞxAðtÞ � r1xAðtÞ; ð6Þ

dxIðtÞ
dt

¼ kyðtÞxAðtÞ � k1xIðtÞ � r2xIðtÞ: ð7Þ

Here, ~αðtÞ is a rate of CLOCK–BMAL1 translocation from the
cytoplasm to the nucleus, k1 and k are, respectively, dissociation
and association rate constants of two complexes,
CLOCK–BMAL1 and PER–CRY, and r1 and r2 correspond to
the sums of degradation rates and the rates of translocation to the
cytoplasm. Employing another variable xn(t)≡ xA(t)+ xI(t) for
the total CLOCK–BMAL1 concentration, the upper equation can

π/2

π

0 3 6 9

c

g (h–1)
φ

0 6 12 18 24

b

t (h)

x(
t)

0

π/2

π

–3 0 3 6

e
φ

0 6 12 18 24

d

t (h)

x(
t)

mRNA BMAL1 CLOCK

CLOCK-BMAL1

PER-CRY

CLOCK-BMAL1

PER-CRY

Gene

a

xI (t )

xA(t )

y(t)k, k1

� (h–1)

Fig. 5 Protein activity dynamics of the mammalian circadian system. a CLOCK and BMAL1 proteins, as well as PER and CRY proteins, heterodimerize with
each other. The activities of CLOCK–BMAL1 complexes are inhibited by PER–CRY complexes through their interactions in the nucleus. For the definition of
each notation, refer to Eq. (8) and its predecessor equations. b–e Possible phase relationship between active CLOCK–BMAL1, and PER–CRY that is not
binding to CLOCK–BMAL1. b Regarding Eq. (9), when gA(t) is constant, the shaded area corresponds to a range of y(t)’s peak time, i.e., ty’s range in
Eq. (12). For comparison, the dashed line indicates the time of x(t)’s steepest decline. c Phase difference ϕ between x(t) and y(t) as a function of g, when
gA(t)= g and x(t) is modeled by Eq. (13) with L= 3 h−1 and h0= 2. Dotted is an infeasible solution with g < gmin= L (Eq. (11)). d Regarding Eq. (9), when
gA(t) varies over time as in Eq. (14), the left and right shaded areas correspond to the ranges of y(t)’s peak time for βτ > 1 and for βτ < 1, respectively
(Methods). e Phase difference ϕ between x(t) and y(t) as a function of α, when gA(t) varies over time as in Eq. (14) with β= 0.5 h−1 (violet) or β= 0.95 h
−1 (black), and τ= 1 h, and x(t) is modeled by Eq. (13) with L= 3 h−1 and h0= 2. Dotted is an infeasible solution with α < αmin. Full details are described in
Methods
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be rewritten as

dxAðtÞ
dt

¼ gAðtÞ � ½r0 þ kyðtÞ�xAðtÞ; ð8Þ

where gA(t)≡ k1xn(t)+ ~α(t) and r0≡ k1+ r1.
Equation (8) represents a class of circadian dynamics

distinguished from our previous case, Eq. (1). Equation (8) for
the core mammalian clock captures the dynamics of active
CLOCK–BMAL1 complexes (i.e., CLOCK–BMAL1 that is not
binding to PER–CRY) in the nucleus, as depicted in Fig. 5a, and is
applied to the insect clock as well. A fundamental difference
between Eqs. (1) and (8) is as follows: in Eq. (1), g(t) exhibits
high-amplitude oscillation as evident from the transcript profiles
of many plant clock genes and mammalian Per genes, and hence g
(t) is a main driving force of x(t)’s oscillation. In contrast, in
Eq. (8), xA(t)’s oscillation is largely driven by y(t)’s oscillation,
rather than by gA(t)’s. Compared to PER2 levels (∝y(t); Fig. 4a),
BMAL1 levels are only weakly oscillating over time10, and
correspondingly, gA(t) would be only weakly oscillating. In fact,
cyclic BMAL1 expression is not even required for mammalian
circadian rhythmicity, as the mutant with constitutive BMAL1
expression still exhibits circadian rhythms11–13.

Given the apparently minor role of BMAL1’s abundance
oscillation in circadian rhythmicity, what beneficial effects on the
clock might follow from this BMAL1 oscillation?

Diverse phase differences between clock components. To the
above enigmatic presence of BMAL1’s abundance oscillation
in the mammalian clock, the effect of protein production cost c
in our previous analysis is not straightforwardly relevant. Unlike
x(t) in Eq. (1), xA(t) involves the only active, not the total,
molecules. In other words, xA(t) is mainly driven by the relatively
costless, post-translational conversion of inactive to active
molecular forms, devoid of severe biosynthetic cost problems in
the previous analysis. Again, we suggest that the clue for the effect
of the BMAL1 oscillation can be found from waveforms, espe-
cially xA(t) and y(t) from the CLOCK–BMAL1 and PER–CRY
complexes. As will be shown later, such BMAL1 oscillation
confers at least two advantages on the circadian system: one is a
wide range of a peak time difference between the two clock
components, active CLOCK–BMAL1, and PER–CRY that is not
binding to CLOCK–BMAL1. The other advantage is the sym-
metry of the waveforms of these components. For the sake of
convenience, we will henceforth drop subscript As from xA(t) and
x′A tð Þ, and simply write them as x(t) and x′(t). Equation (8) can
be rewritten as

kyðtÞ ¼ gAðtÞ � x′ðtÞ
xðtÞ � r0: ð9Þ

If we assume that gA(t) (∝ BMAL1 level) is completely constant
over time, i.e., gA(t)= g, waveforms y(t) and x(t) in Eq. (9) are
substantially constrained by each other. Specifically,

kyðtÞ ¼ g � x′ðtÞ
xðtÞ � r0; ð10Þ

g � gmin � max
t

x′ðtÞ; ð11Þ

where the inequality of the lower relation comes from x(t) ≥ 0 and
r0+ ky(t) ≥ 0. We will use a notation tf � arg maxt f ðtÞ (0 < tf ≤
T) for any given periodic function f(t) (f(t)= f(t+ T)) when tf is
uniquely determined by 0 < tf ≤ T. For example, tx denotes the

peak time of x(t) during 0 < t ≤ T. From Eq. (10),

t�x′
x
� ty � t1

x
: ð12Þ

Note that t�x′
x
is identical to the hotspot tR. In other words, ty is

even closer to x(t)’s trough time than tR. This range of ty is
illustrated in Fig. 5b. Generally, a peak time difference between y
(t) and x(t) takes such a narrow range that y(t)’s peak time is
almost the same as x(t)’s trough time. Therefore, if gA(t) stays
constant over time, waveforms x(t) and y(t) are only allowed to
have a near anti-phase relationship.

To exemplify the above point, we consider the case with a
sinusoidal wave x′(t)= L sin(ωt) where L is a constant and ω≡
2π/T. In this case,

xðtÞ ¼ � L
ω
cosðωtÞ þ L

ω
þ h0; ð13Þ

with an additional constant h0. In the subsequent analyses,
we treat x(t) in Eq. (13) as dimensionless, without loss of
generality. We define a phase difference between x(t) and y(t)
in Eq. (10) as ϕ≡ |ω(ty− tx)|. Using Eq. (10), ϕ=
π � 2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � L2 þ g2

p � g
� �

=ðC þ LÞ� �
, where C≡ h0ω+ L

and g ≥ gmin= L from Eq. (11). This exact solution of ϕ is indeed
very close to π, as shown in Fig. 5c. This tendency is consistent
with our generic result that constant gA(t) forces x(t) and y(t) into
a near anti-phase relationship.

In contrast, if gA(t) is no longer constant but cycles over time,
as observed with cyclic BMAL1 expression in nature, then
waveforms y(t) and x(t) in Eq. (9) are not much constrained by
each other, and their peak time difference (or phase difference)
can be flexible depending on gA(t)’s oscillatory form. Because
there is a lack of compelling experimental data on the waveform
of gA(t), we start with the following assumption:

gAðtÞ � αþ βxðt þ τÞ; ð14Þ

where α, β, and τ are constants, and β ≥ 0 and τ ≥ 0. From Eq. (9),
r0+ ky(t) ≥ 0, and gA(t) ≥ 0, α should satisfy

α � αmin � max max
t

x′ðtÞ � βxðt þ τÞ½ �;max
t

�βxðtÞ½ �
� �

: ð15Þ

Next, we show that x(t) and y(t) can have almost any in-phase to
anti-phase relationship, covering a wide range of the phase
difference. If τ � T ,

xðt þ τÞ � xðtÞ þ τx′ðtÞ: ð16Þ

Combined with Eq. (9), it leads to

kyðtÞ � α� ð1� βτÞx′ðtÞ
xðtÞ þ β� r0: ð17Þ

Depending on signs of α and 1− βτ in Eq. (17), y(t) is now
allowed to peak anytime of a day relative to x(t)’s peak time, as
proven in Methods.

This result is illustrated in Fig. 5d. Together, if BMAL1 level
(∝gA(t) in Eqs. (8) and (9)) is not constant but varies over time, it
confers much freedom on the waveform y(t) of PER–CRY that is
not binding to CLOCK–BMAL1, and thus allows various phase
differences between those unbinding CLOCK–BMAL1 and
PER–CRY complexes (x(t) and y(t)) through the adjustment of
parameters α, β, and τ. As in Fig. 5d, the unbinding
CLOCK–BMAL1 and PER–CRY complexes can take almost any
in-phase to anti-phase relationship. This result is in sharp
contrast to the case with constant gA(t), where the unbinding
CLOCK–BMAL1 and PER–CRY complexes have a
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predominantly anti-phase-like relationship. Our predictions can
be verified by experimental techniques, such as co-
immunoprecipitation assays, measuring the time series of
CLOCK–BMAL1 and PER–CRY levels across different tissues
or developmental stages, while excluding the levels of inactive
CLOCK–BMAL1.

These potentially diverse phase differences, conferred by cyclic
expression of positive arm components, may help in the
coordination of tissue-specific or developmental stage-specific
clock events in complex multicellular organisms, such as
mammals and insects20,40. Interestingly, the fungus Neurospora
crassa, a relatively simple species, shows almost constant levels of
white collar-1 (wc-1) expression41, and thus would have almost
constant gA(t). Therefore, we expect that the fungal clock may
have an only anti-phase-like relationship between its core
components, nuclear WC-1 and FREQUENCY (FRQ) proteins
(see Supplementary Discussion).

To illustrate the above diverse phase differences conferred by
BMAL1 cycling, we revisit the case with a sinusoidal wave x(t) in
Eq. (13) and consider the oscillation of gA(t) in Eq. (14). From Eq.
(9), we obtain the exact solution of the phase difference between x
(t) and y(t), as plotted in Fig. 5e. This exact solution is in good
agreement with our generic results based on the approximation
Eqs. (16) and (17).

Symmetries of waveforms. Another advantage of cyclic expres-
sion of positive arm components in mammalian and insect clocks
is in the symmetry of waveforms about the peak phases. Previous
experimental data from the mammalian clock indicate the exis-
tence of such symmetry that ascending and descending phases
span almost the same time intervals42, while its phenotypic sig-
nificance still remains unknown.

To demonstrate the effect of BMAL1 cycling on the waveform
symmetry, we first assume the contradictory scenario that gA(t) is
constant over time with gA(t)= g. Therefore, ky(t)= [g− x′(t)]/x(t)
− r0 from Eq. (10). In this case, waveforms x(t) and y(t) from
CLOCK–BMAL1 and PER–CRY complexes cannot easily
satisfy both symmetric relations x(tx− t) ≈ x(tx+ t) and
y(ty− t) ≈ y(ty+ t) at the same time, because x′(t) term in
ky(t)= [g− x′(t)]/x(t)− r0 breaks the symmetry of either x(t) or
y(t) waveform unless g 	 maxt x′ðtÞj j to diminish the effect of x′(t).

In contrast, if BMAL1 level (∝gA(t)) is not constant but varies
over time, both unbinding CLOCK–BMAL1 and PER–CRY
profiles (x(t) and y(t)) are allowed to have symmetric waveforms
relatively easily. For example, if gA(t) ≈ α+ βx(t+ τ) and x(t+
τ) ≈ x(t)+ τx′(t) with τ � T as in Eqs. (14) and (16), then ky
(t) ≈ [α− (1− βτ)x′(t)]/x(t)+ β− r0 in Eq. (17). Therefore, both
x(t) and y(t) waveforms can be approximately symmetric at the
same time, as long as α=ð1� βτÞj j 	 maxt x′ðtÞj j for the
diminished effect of x′(t). This condition can be satisfied more
easily than the previous one.

This waveform symmetry, along with the above phase
difference between two core components (unbinding
CLOCK–BMAL1 and PER–CRY complexes), shows that the
waveforms are useful to understand the effect of the enigmatic
oscillation in BMAL1 expression.

Discussion
In this study, we have revealed that protein waveforms are
informative about the underlying mechanisms of circadian
clockwork.

A sharp waveform at the hotspot time point (i.e., with large
rmin) implies rhythmic post-translational regulation that yields a
phase-specific protein half-life; otherwise, too large costs of pro-
tein syntheses can be incurred for those waveforms. Such

rhythmic degradation rates are observed in plant and mammalian
circadian clocks, and can substantially reduce the protein pro-
duction costs, as demonstrated in Table 1. If more experimental
data become available, our waveform-cost analysis can be
extended to other clock proteins. For example, the orphan nuclear
receptor REV-ERBα in the mammalian clock may have a phase-
specific half-life, driven by the rhythmic activity of glycogen
synthase kinase-3β that regulates the REV-ERBα stability43–45.
Hence, if the half-lives measured at multiple specific time points
become available, REV-ERBα will be a good target candidate for
our cost analysis, aided by the existing REV-ERBα expression
profiles46.

On the other hand, regarding any possible extra costs that may
be incurred by rhythmic degradation rates, we note that the cost c
of a given protein is not the concept to include the production
cost of its proteolytic factor. Yet, the half-life can exhibit a
rhythmic pattern by the proteolytic factor’s oscillation, and thus
one may suggest that the cost c should be extended to the pro-
teolytic factor’s production cost. This extra cost from the pro-
teolytic factor production, however, is not always relevant and
needs cautious analyses in the future. For example, if the pro-
teolytic factor has not only evolved for the degradation of a
particular protein but also for other functions, then the cost of the
proteolytic factor production shall not be covered by the cost c in
question. This is because such a proteolytic factor continues to be
produced for multiple purposes, not exclusively for the degra-
dation of that particular protein.

In this study, we also suggest that seemingly dispensable, cyclic
expression of certain clock proteins in mammals and insects may
allow both a broad range of phase differences between clock
components and the symmetries of the waveforms. The various
phase differences may be important for tissue-specific or devel-
opmental stage-specific clock coordination in complex multi-
cellular organisms, such as mammals and insects. As previously
mentioned, fungi do not show such cyclic expression of the
corresponding components, and their relatively simple orga-
nismal forms may not necessitate as widely ranging phase dif-
ferences as in the cases of mammals and insects.

Our waveform-guided approach is well supported by experi-
mental data (Figs. 2b, 3b and 4b), and provides insights into
circadian mechanisms of evolutionarily distant organisms6–8.
Furthermore, we envisage that the concepts presented in this
study can be applied beyond circadian dynamics, such as to time-
course data from cell cycle systems and synthetic genetic oscil-
lators47–49.

Methods
Experimental measurement of the PRR7 half-life. We describe the details of our
experimental methods for the measurement of the PRR7 degradation rate, of which
data are available in Fig. 2c, d and Supplementary Figs. 1 and 2. For CHX assays,
PRR7pro::FLAG-PRR7-GFP seedlings were grown on MS media with 3% sucrose
and 1% agar under 12L:12D cycles (white fluorescent light; 30–40 μmol m−2 s−1) at
22 °C for 14 days. Seedlings were transferred to MS liquid media with 100 μM CHX
or mock (ethanol) at ZT17 in darkness. The tissues were kept in the dark under
slow shaking and collected at 0, 1, 3, 5, and 7 h post treatment.

For immunoblots, the tissue was ground in liquid nitrogen and extracted in
protein extraction buffer (50 mM Tris–Cl, pH 7.5, 150 mM NaCl, 0.5% Nonidet P-
40, 1 mM EDTA, 3 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 5 μg
ml−1 leupeptin, 1 μg ml−1 aprotinin, 1 μg ml−1 pepstatin, 5 μg ml−1 antipain, 5 μg
ml−1 chymostatin, 50 μM MG132, 50 μM MG115, 50 μM ALLN). Total proteins
were separated using an 8% SDS–PAGE gel (acrylamide:bisacrylamide, 37.5:1),
immunoblotted and probed with anti-GFP antibody (Abcam, ab6556) and
polyclonal anti-ADK antibody (gift from Dr. David Bisaro) diluted to 1:4000 and
1:15,000, respectively, followed by anti-rabbit IgG conjugated with horseradish
peroxidase (GE healthcare, NA934). Chemiluminescent detection was performed
using SuperSignalTM West Pico Chemiluminescent Substrate (Thermo Scientific,
34080). The FLAG-PRR7-GFP protein signals were calculated by ImageJ software
(NIH, version 1.8.0) from three biological repeats, and were normalized to their
corresponding ADK (adenosine kinase) signal intensities individually.
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All unique biological materials used in this study (PRR7pro::FLAG-PRR7-GFP)
are available from the authors upon request.

Analysis of data from the plant and mammalian clocks. By writing the protein
synthesis rate g(t) as g(t)= k(t)gm(t) and by assuming the roughly constant k(t), i.e.,
k(t) ≈ k, Eq. (1) can be written as

dxðtÞ
dt

� kgmðtÞ � rðtÞxðtÞ; ð18Þ

which leads to

k � x′ tið Þ þ r tið Þx tið Þ
gm tið Þ ; ð19Þ

where ti corresponds to each time point t= ti with experimentally available
degradation rate r(t). In the case of PRR7, we used the protein degradation rates at
ti= 4, 12, and 18 h (Fig. 2 and Supplementary Fig. 3). The first two degradation
rates were obtained from the protein abundance data in Fig. 7b of Farre et al.28,
while the last degradation rate was from our own experimental data in Fig. 2c. We
also obtained the experimental data of the mRNA and protein profiles from Fig. 5d
of Flis et al.27 and Fig. 5a of Nakamichi et al.26, respectively. Both datasets have 2-h
sampling intervals under 12L:12D cycles. These mRNA and protein levels were
normalized by the peak levels of their splines, and adopted for gm(t) and x(t) in Eq.
(18), respectively. From Eq. (5), cg ≈ 0.40 h−1. Using r(ti), x(ti), and gm(ti), we
obtained k from Eq. (19). To be precise, although we treat k as a constant, different
tis can have different k values calculated from Eq. (19). For simplicity of our
analysis, we discarded such differences and took the average of k over ti. Using this
k, we inferred r(t) for the rest of time (t ≠ ti) by the following formula from Eq.
(18):

rðtÞ � kgmðtÞ � x′ðtÞ
xðtÞ : ð20Þ

Because experimental protein and mRNA levels have 2-h sampling intervals, we
inferred degradation rate r(t) every 2 h, except for t= 4, 12, and 18 h for which we
used experimentally known r(t) values. The overall r(t) profile exhibits two peaks at
20 h ≤ t ≤ 22 h and at 2 h ≤ t ≤ 10 h. The former peak is a natural consequence of
large R(t) around that time (red solid line in Supplementary Fig. 3a), while the
latter may be an artifact from unconsidered biological factors. To reduce the effect
of such possible artifact, we replace every rðtÞ>max20h�t�22hrðtÞ by
max20h�t�22hrðtÞ, because max20h�t�22hrðtÞ � 1:02 h−1 and the real degradation
rate is unlikely to be larger than 1.02 h−1. We also replace every r(t) < min{r(t
= 4 h), r(t= 12 h), r(t= 18 h)} by min{r(t= 4 h), r(t= 12 h), r(t= 18 h)}, and
therefore the lower bound of r(t) is set to the minimum value of experimental r(t)
values. In such a way, the difference between c and cg is reduced (Eqs. (2) and (5)),
leading to a conservative estimate of that difference. The resulting r(t) is presented
in Supplementary Fig. 3a. Because r(t) at 2 h ≤ t ≤ 10 h is improbably deviated from
the overall trend of experimental r(t) values, we correct this part by linear inter-
polation and extrapolation of the experimental r(t= 4 h) and r(t= 12 h) values, as
shown in Fig. 2f. Consequently, c ≈ 0.30cg with r(t) in Fig. 2f and c ≈ 0.67cg with r(t)
in Supplementary Fig. 3a. In other words, whether correcting r(t) at 2 h ≤ t ≤ 10 h
or not, the actual cost of PRR7 waveform maintenance would be at most one-third
to two-thirds of the assumed cost in the case of a constant degradation rate.

Thus far, we have adopted the experimental protein levels for x(t). However, we
suppose that experimental protein levels, when low around a trough phase, can be
susceptible to measurement errors. Such potentially inaccurate data, if these data
underestimate the protein levels around the trough phase, can lead to the
overestimation of rmin in Eq. (4) and cg in Eq. (5), and thereby exaggerate a
difference between cg and c. To mitigate these possibly erroneous effects, we
consider a new x(t) whose values at t= 0, 22, and 24 h are replaced by that of x(t=
2 h), as plotted in Supplementary Fig. 3b. With this smoothened x(t), we obtain
rmin ≈ 0.69 h−1, which is smaller than rmin ≈ 0.88 h−1 from the original x(t).
Likewise, new cg ≈ 0.32 h−1 and c ≈ 0.12 h−1. Here, c is calculated from the newly
estimated r(t) in Supplementary Fig. 3c. On the other hand, without a correction
for 2 h ≤ t ≤ 10 h as in Supplementary Fig. 3d, c ≈ 0.22 h−1. Still, the cost of PRR7
waveform maintenance is at most one-third to two-thirds of the assumed cost in
the case of a constant degradation rate. These results are summarized in
Supplementary Table 1.

In the case of PRR5, we used experimental protein degradation rates at ti= 12
and 19 h (Fig. 3 and Supplementary Fig. 4) from the protein abundance data in Fig.
7c of Baudry et al.29. We obtained the experimental data of the mRNA and protein
profiles from Fig. 5d of Flis et al.27 and Fig. 5a of Nakamichi et al.26, respectively.
Both datasets have 2-h sampling intervals under 12L:12D cycles. These mRNA and
protein levels were normalized by the peak levels of their splines, and adopted for
gm(t) and x(t) in Eq. (18), respectively. Following a similar procedure to the case
with PRR7, we obtained cg ≈ 0.77 h−1, and inferred the degradation rate r(t) every
2 h, except for t= 12 and 19 h for which we used experimentally known r(t) values.
When calculating c based on this inferred r(t), we replace every r(t) > rmin by rmin,
because the real degradation rate is unlikely to be larger than rmin ≈ 1.69 h−1. We
also replace every r(t) < min{r(t= 12 h), r(t= 19 h)} by min{r(t= 12 h), r(t= 19

h)}, and therefore the lower bound of r(t) is set to the minimum value of
experimental r(t) values. In such a way, the difference between c and cg is reduced,
leading to a conservative estimate of that difference. The resulting r(t) is presented
in Supplementary Fig. 4a. Because r(t) at 6 h ≤ t ≤ 10 h is improbably deviated from
the overall trend of experimental r(t) values, we correct this part by linear
extrapolation of the experimental r(t= 12 h) value, as shown in Fig. 3d.
Consequently, c ≈ 0.17cg with r(t) in Fig. 3d and c ≈ 0.34cg with r(t) in
Supplementary Fig. 4a. In other words, whether correcting r(t) at 6 h ≤ t ≤ 10 h or
not, the actual cost of PRR5 waveform maintenance would be at most one-sixth to
one-third of the assumed cost in the case of a constant degradation rate.

To mitigate the aforementioned, possibly erroneous effects from low protein
levels around a trough phase, we consider new x(t) whose values at t= 0, 22, and
24 h are increased as in Supplementary Fig. 4b. With this smoothened x(t), we
obtain rmin ≈ 0.55 h−1, which is smaller than rmin ≈ 1.69 h−1 from the original x(t).
Likewise, new cg ≈ 0.26 h−1 and c ≈ 0.13 h−1. Here, c is calculated from the newly
estimated r(t) in Supplementary Fig. 4c. On the other hand, without a correction
for 6 h ≤ t ≤ 10 h as in Supplementary Fig. 4d, c ≈ 0.17 h−1. Still, the cost of PRR5
waveform maintenance is at most one-half to two-thirds of the assumed cost in the
case of a constant degradation rate. These results are summarized in
Supplementary Table 1.

For PRR7 and PRR5, the time-varying nature of k(t) in g(t)= k(t)gm(t) can be
considered as an alternative to the above possibility k(t) ≈ k. Because of a lack of
data on the genuine form of k(t) for these proteins, we tried a sinusoidal
approximation k(t) ≈max{a sin(2πt/T− ϕ)+ b, ϵk}, where a, b, and ϕ are constants
that fit the function a sin(2πt/T− ϕ)+ b to the right-hand side of Eq. (19) and ϵk is
a small positive constant to ensure k(t) > 0 (ϵk was set to the minimum value of the
right-hand side of Eq. (19)). In the PRR5 case, a, b, and ϕ were underdetermined,
and thus a and b were obtained for each value of ϕ in the range 0 ≤ ϕ ≤ π/2 (which
does not involve any loss of generality for the PRR5 data). Applying such k(t) to
Eq. (20), instead of k therein, and repeating all the above procedures
(Supplementary Fig. 5) did not much change our results: under this assumption of
the time-varying k(t), the estimated rhythmic degradation rates led to ~73%
reduction of the PRR7 production cost and ~83–84% reduction of the PRR5
production cost (cf. Table 1 for the case k(t) ≈ k).

In the case of the mouse PER2 protein, we obtained the time-course abundance
data of the CHX-untreated control in Fig. 1a of Zhou et al.35, and adopted this
protein profile for x(t). The original profile covers ~45-h-long data with 0.1-h
resolution. Therefore, we considered the data at 9.6 h ≤ t ≤ 33 h for one circadian
period (T= 23.4 h), and smoothened them with a moving window average (3-h
window). These data were normalized by their peak level, and the resulting x(t)
appears in Fig. 4a. R(t) derived from this x(t) is very noisy, and therefore
smoothened with a moving window average (1-h window). For experimental
protein degradation rates, we used the instantaneous half-lives after 0.5 h since
CHX treatment at t= 19, 22, 25, 28, and 30 h in Supplementary Fig. 1a of Zhou
et al.35.

Full details of the PRR7, PRR5, and PER2 data collection are provided
in Supplementary Methods and Supplementary Table 1.

Analysis of data from the algal clock. In the case of CCA1 and TOC1 proteins in
the Ostreococcus circadian system, we obtained the full time-course degradation
rate r(t) and protein level x(t) data from Fig. 1a, b of van Ooijen et al.39, respec-
tively (12L:12D-cycle condition). We did not perform any normalization of x(t),
and the unit of x(t) here follows that of van Ooijen et al.39 (molecules cell−1).
Because x(t)’s sampling resolution was rather low (4-h sampling interval), we did
not apply r(t) and x(t) to Eq. (3) wherein the specific form of R(t) could be sensitive
to the x(t)’s sampling resolution. For the calculation of cg, we estimated rmin as
rmin � minfmaxt rðtÞ;maxt RðtÞg, with regards to possibly inaccurate R(t) from
the low sampling resolution of x(t). For the calculation of c, we adopted r(t)x(t) in
Fig. 1c of van Ooijen et al.39. As a result, for CCA1 and TOC1, rmin ≈ 0.25 and 0.28
h−1, cg ≈ 60.7 and 19.7 molecules cell−1 h−1, and c ≈ 42.5 and 11.6 molecules cell−1

h−1, respectively. In other words, the cost of CCA1 and TOC1 production is about
two-thirds of the assumed cost in the case of constant degradation rates.

Effects of oscillating BMAL1 expression. If τ � T in Eqs. (14) and (17) can be
used to calculate a phase difference between x(t) and y(t). Without loss of gen-
erality, let x(t) be the lowest at t= T, i.e., t1

x
¼ T . Depending on signs of α and 1−

βτ in Eq. (17), we consider the following four cases:

1. If α > 0 and βτ < 1, y(t) in Eq. (17) is described essentially in the same way as
Eq. (10), while extra constants in Eq. (17) do not affect the way to determine a
phase difference between x(t) and y(t). Therefore, ty still follows

t�x′
x
� ty � t1

x
¼ T; ð21Þ

and the phase difference between x(t) and y(t) is determined in a similar way
to the case with constant gA(t) (i.e., gA(t)= g). y(t) in this case will be called
y1(t).
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2. If α > 0 and βτ > 1, y(t) is determined in a similar way to y1(t), but with the
flipped sign of x′(t). Therefore,

0 � ty � tx′
x
: ð22Þ

y(t) in this case will be called y2(t).
3. If α < 0 and βτ < 1, y(t) is described in a similar way to −y2(t). Therefore,

tx � ty � t�x′
x
: ð23Þ

4. If α < 0 and βτ > 1, y(t) is described in a similar way to −y1(t). Therefore,

tx′
x
� ty � tx : ð24Þ

In addition, both x(t) and y(t) can have symmetric waveforms as long as
α=ð1� βτÞj j 	 maxt x′ðtÞj j (for example, this condition can be satisfied when
βτ ≈ 1).

Besides the case of Eq. (14) with τ � T , we analyze the case with τ 
 T=2. In
this case, τ= T/2+ ϵ with ϵj j � T , and x(t+ τ) in Eq. (14) can be approximated as

x t þ T
2
þ ϵ

	 

� x t þ T

2

	 

þ ϵx′ t þ T

2

	 

: ð25Þ

We further assume the waveform that x(t+ T/2) ≈ J− x(t), where J is a constant
satisfying J � ð2=TÞR T

0 xðtÞdt. From Eq. (9),

kyðtÞ � αþ βJ � ð1þ βϵÞx′ðtÞ
xðtÞ � r0 þ βð Þ: ð26Þ

This equation takes a similar form to Eq. (17). By dividing four different categories
of y(t) depending on signs of α+ βJ and 1+ βϵ, it is straightforward to obtain
similar results to our previous analysis of a phase difference between x(t) and y(t)
when τ � T .

In addition, both x(t) and y(t) can have symmetric waveforms as long as
ðαþ βJÞ=ð1þ βϵÞj j 	 maxt x′ðtÞj j (for example, this condition can be satisfied
when βϵ ≈−1).

To illustrate the diverse phase differences conferred by BMAL1 cycling, we
study the case with a sinusoidal wave x(t) in Eq. (13) and consider the oscillation of
gA(t) in Eq. (14). From Eq. (9), ty is obtained as

ωty ¼ 2πnþ 2 tan�1 ωαþCβ 1�cosðωτÞ½ �
ðCþLÞ ω�β sinðωτÞ½ �

n
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωαþCβ 1�cosðωτÞ½ �ð Þ2þ C2�L2ð Þ ω�β sinðωτÞ½ �2

p
ðCþLÞ ω�β sinðωτÞ½ �

� ð27Þ

with C= h0ω+ L and an integer n that satisfies 0 < ωty ≤ 2π. From Eq. (15), α
satisfies

α � αmin ¼ max L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2β

ω
sinðωτÞ þ β2

ω2

s
� βL

ω
; 0

8<
:

9=
;� βh0: ð28Þ

Equation (27) and tx= T/2 give rise to the exact solution of the phase difference ϕ
between x(t) and y(t) (ϕ= |ω(tx− ty)|), as plotted in Fig. 5e. This exact solution is
in good agreement with our generic results based on the approximation Eqs. (16)
and (17).

Code availability. Source codes for analyzing data in the manuscript have been
deposited into the public repositories GitHub and Zenodo.

Data availability
All relevant data are available in Methods, Figs. 2–4, Supplementary Methods,
Supplementary Figs. 1–5, and Supplementary Data 1.
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