73 research outputs found

    Hybridization and speciation in angiosperms: a role for pollinator shifts?

    Get PDF
    The majority of convincingly documented cases of hybridization in angiosperms has involved genetic introgression between the parental species or formation of a hybrid species with increased ploidy; however, homoploid (diploid) hybridization may be just as common. Recent studies, including one in BMC Evolutionary Biology, show that pollinator shifts can play a role in both mechanisms of hybrid speciation

    Resource Competition Triggers the Co-Evolution of Long Tongues and Deep Corolla Tubes

    Get PDF
    Background: It is normally thought that deep corolla tubes evolve when a plant’s successful reproduction is contingent on having a corolla tube longer than the tongue of the flower’s pollinators, and that pollinators evolve ever-longer tongues because individuals with longer tongues can obtain more nectar from flowers. A recent model shows that, in the presence of pollinators with long and short tongues that experience resource competition, coexisting plant species can diverge in corolla-tube depth, because this increases the proportion of pollen grains that lands on co-specific flowers. Methodology/Principal Findings: We have extended the model to study whether resource competition can trigger the coevolution of tongue length and corolla-tube depth. Starting with two plant and two pollinator species, all of them having the same distribution of tongue length or corolla-tube depth, we show that variability in corolla-tube depth leads to divergence in tongue length, provided that increasing tongue length is not equally costly for both species. Once the two pollinator species differ in tongue length, divergence in corolla-tube depth between the two plant species ensues. Conclusions/Significance: Co-evolution between tongue length and corolla-tube depth is a robust outcome of the model, obtained for a wide range of parameter values, but it requires that tongue elongation is substantially easier for one pollinator species than for the other, that pollinators follow a near-optimal foraging strategy, that pollinators experienc

    A systems approach to identifying correlated gene targets for the loss of colour pigmentation in plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The numerous diverse metabolic pathways by which plant compounds can be produced make it difficult to predict how colour pigmentation is lost for different tissues and plants. This study employs mathematical and <it>in silico </it>methods to identify correlated gene targets for the loss of colour pigmentation in plants from a whole cell perspective based on the full metabolic network of <it>Arabidopsis</it>. This involves extracting a self-contained flavonoid subnetwork from the AraCyc database and calculating feasible metabolic routes or elementary modes (EMs) for it. Those EMs leading to anthocyanin compounds are taken to constitute the anthocyanin biosynthetic pathway (ABP) and their interplay with the rest of the EMs is used to study the minimal cut sets (MCSs), which are different combinations of reactions to block for eliminating colour pigmentation. By relating the reactions to their corresponding genes, the MCSs are used to explore the phenotypic roles of the ABP genes, their relevance to the ABP and the impact their eliminations would have on other processes in the cell.</p> <p>Results</p> <p>Simulation and prediction results of the effect of different MCSs for eliminating colour pigmentation correspond with existing experimental observations. Two examples are: i) two MCSs which require the simultaneous suppression of genes DFR and ANS to eliminate colour pigmentation, correspond to observational results of the same genes being co-regulated for eliminating floral pigmentation in <it>Aquilegia </it>and; ii) the impact of another MCS requiring CHS suppression, corresponds to findings where the suppression of the early gene CHS eliminated nearly all flavonoids but did not affect the production of volatile benzenoids responsible for floral scent.</p> <p>Conclusions</p> <p>From the various MCSs identified for eliminating colour pigmentation, several correlate to existing experimental observations, indicating that different MCSs are suitable for different plants, different cells, and different conditions and could also be related to regulatory genes. Being able to correlate the predictions with experimental results gives credence to the use of these mathematical and <it>in silico </it>analyses methods in the design of experiments. The methods could be used to prioritize target enzymes for different objectives to achieve desired outcomes, especially for less understood pathways.</p

    Geographic genetic structure of Iberian columbines (gen. Aquilegia)

    Get PDF
    Southern European columbines (genus Aquilegia)are involved in active processes of diversification, and the Iberian Peninsula offers a privileged observatory to witness the process. Studies on Iberian columbines have provided significant advances on species diversification,but we still lack a complete perspective of the genetic diversification in the Iberian scenario. This work explores how genetic diversity of the genus Aquilegia is geographically structured across the Iberian Peninsula. We used Bayesian clustering methods, principal coordinates analyses, and NJ phenograms to assess the genetic relationships among 285 individuals from 62 locations and detect the main lineages. Genetic diversity of Iberian columbines consists of five geographically structured lineages, corresponding to different Iberian taxa. Differentiation among lineages shows particularly complex admixture patterns at Northeast and highly homogeneous toward Northwest and Southeast. This geographic genetic structure suggests the existence of incomplete lineage sorting and interspecific hybridization as could be expected in recent processes of diversification under the influence of quaternary postglacial migrations. This scenario is consistent with what is proposed by the most recent studies on European and Iberian columbines, which point to geographic isolation and divergent selection by habitat specialization as the main diversification drivers of the Iberian Aquilegia complex

    Genomic tools development for Aquilegia: construction of a BAC-based physical map

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Aquilegia</it>, consisting of approximately 70 taxa, is a member of the basal eudicot lineage, Ranuculales, which is evolutionarily intermediate between monocots and core eudicots, and represents a relatively unstudied clade in the angiosperm phylogenetic tree that bridges the gap between these two major plant groups. <it>Aquilegia </it>species are closely related and their distribution covers highly diverse habitats. These provide rich resources to better understand the genetic basis of adaptation to different pollinators and habitats that in turn leads to rapid speciation. To gain insights into the genome structure and facilitate gene identification, comparative genomics and whole-genome shotgun sequencing assembly, BAC-based genomics resources are of crucial importance.</p> <p>Results</p> <p>BAC-based genomic resources, including two BAC libraries, a physical map with anchored markers and BAC end sequences, were established from <it>A. formosa</it>. The physical map was composed of a total of 50,155 BAC clones in 832 contigs and 3939 singletons, covering 21X genome equivalents. These contigs spanned a physical length of 689.8 Mb (~2.3X of the genome) suggesting the complex heterozygosity of the genome. A set of 197 markers was developed from ESTs induced by drought-stress, or involved in anthocyanin biosynthesis or floral development, and was integrated into the physical map. Among these were 87 genetically mapped markers that anchored 54 contigs, spanning 76.4 Mb (25.5%) across the genome. Analysis of a selection of 12,086 BAC end sequences (BESs) from the minimal tiling path (MTP) allowed a preview of the <it>Aquilegia </it>genome organization, including identification of transposable elements, simple sequence repeats and gene content. Common repetitive elements previously reported in both monocots and core eudicots were identified in <it>Aquilegia </it>suggesting the value of this genome in connecting the two major plant clades. Comparison with sequenced plant genomes indicated a higher similarity to grapevine (<it>Vitis vinifera</it>) than to rice and <it>Arabidopsis </it>in the transcriptomes.</p> <p>Conclusions</p> <p>The <it>A. formosa </it>BAC-based genomic resources provide valuable tools to study <it>Aquilegia </it>genome. Further integration of other existing genomics resources, such as ESTs, into the physical map should enable better understanding of the molecular mechanisms underlying adaptive radiation and elaboration of floral morphology.</p

    An Evaluation of Putative Sympatric Speciation within Limnanthes (Limnanthaceae)

    Get PDF
    Limnanthes floccosa ssp. floccosa and L. floccosa ssp. grandiflora are two of five subspecies within Limnanthes floccosa endemic to vernal pools in southern Oregon and northern California. Three seasons of monitoring natural populations have quantified that L. floccosa ssp. grandiflora is always found growing sympatrically with L. floccosa ssp. floccosa and that their flowering times overlap considerably. Despite their subspecific rank within the same species crossing experiments have confirmed that their F1 hybrids are sterile. An analysis of twelve microsatellite markers, with unique alleles in each taxon, also shows exceedingly low levels of gene flow between populations of the two subspecies. Due to the lack of previous phylogenetic resolution among L. floccosa subspecies, we used Illumina next generation sequencing to identify single nucleotide polymorphisms from genomic DNA libraries of L. floccosa ssp. floccosa and L. floccosa ssp. grandiflora. These data were used to identify single nucleotide polymorphisms in the chloroplast, mitochondrial, and nuclear genomes. From these variable loci, a total of 2772 bp was obtained using Sanger sequencing of ten individuals representing all subspecies of L. floccosa and an outgroup. The resulting phylogenetic reconstruction was fully resolved. Our results indicate that although L. floccosa ssp. floccosa and L. floccosa ssp. grandiflora are closely related, they are not sister taxa and therefore likely did not diverge as a result of a sympatric speciation event

    Reproductive Ecology and Severe Pollen Limitation in the Polychromic Tundra Plant, Parrya nudicaulis (Brassicaceae)

    Get PDF
    Pollen limitation is predicted to be particularly severe in tundra habitats. Numerous reproductive patterns associated with alpine and arctic species, particularly mechanisms associated with reproductive assurance, are suggested to be driven by high levels of pollen limitation. We studied the reproductive ecology of Parrya nudicaulis, a species with relatively large sexual reproductive investment and a wide range of floral pigmentation, in tundra habitats in interior montane Alaska to estimate the degree of pollen limitation. The plants are self-compatible and strongly protandrous, setting almost no seed in the absence of pollinators. Supplemental hand pollinations within pollinator exclusion cages indicated no cage effect on seed production. Floral visitation rates were low in both years of study and particularly infrequent in 2010. A diversity of insects visited P. nudicaulis, though syrphid and muscid flies composed the majority of all visits. Pollen-ovule ratios and levels of heterozygosity are consistent with a mixed mating system. Pollen limitation was severe; hand pollinations increased seed production per plant five-fold. Seed-to-ovule ratios remained low following hand pollinations, indicating resource limitation is likely to also be responsible for curtailing seed set. We suggest that pollen limitation in P. nudicaulis may be the result of selection favoring an overproduction of ovules as a bet-hedging strategy in this environmental context of highly variable pollen receipt

    Molecular Cloning and Copy Number Variation of a Ferritin Subunit (Fth1) and Its Association with Growth in Freshwater Pearl Mussel Hyriopsis cumingii

    Get PDF
    Iron is one of the most important minor elements in the shells of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell growth. A novel ferritin subunit (Fth1) cDNA from the freshwater pearl mussel (Hyriopsis cumingii) was isolated and characterized. The complete cDNA contained 822 bp, with an open reading frame (ORF) of 525 bp, a 153 bp 5′ untranslated region (UTR) and a 144 bp 3′ UTR. The complete genomic DNA was 4125 bp, containing four exons and three introns. The ORF encoded a protein of 174 amino acids without a signal sequence. The deduced ferritin contained a highly conserved motif for the ferroxidase center comprising seven residues of a typical vertebrate heavy-chain ferritin. It contained one conserved iron associated residue (Try27) and iron-binding region signature 1 residues. The mRNA contained a 27 bp iron-responsive element with a typical stem-loop structure in the 5′-UTR position. Copy number variants (CNVs) of Fth1 in two populations (PY and JH) were detected using quantitative real-time PCR. Associations between CNVs and growth were also analyzed. The results showed that the copy number of the ferritin gene of in the diploid genome ranged from two to 12 in PY, and from two to six in JH. The copy number variation in PY was higher than that in JH. In terms of shell length, mussels with four copies of the ferritin gene grew faster than those with three copies (P<0.05), suggesting that CNVs in the ferritin gene are associated with growth in shell length and might be a useful molecular marker in selective breeding of H. cumingii

    The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae)

    Get PDF
    The discovery and characterization of informative intraspecific genetic markers is fundamental for evolutionary and conservation genetics studies. Here, we used nuclear ribosomal ITS sequences to access intraspecific genetic diversity in 23 species of the genus Passiflora L. Some degree of variation was detected in 21 of these. The Passiflora and Decaloba (DC.) Rchb. subgenera showed significant differences in the sizes of the two ITS regions and in GC content, which can be related to reproductive characteristics of species in these subgenera. Furthermore, clear geographical patterns in the spatial distribution of sequence types were identified in six species. The results indicate that ITS may be a useful tool for the evaluation of intraspecific genetic variation in Passiflora
    corecore