7,420 research outputs found

    The role of strain localization in magma injection into a transtensional shear zone (Variscan belt, SW Iberia).

    Get PDF
    This study deals with the interaction between deformation and magmatism in mid- to deep-crustal domains. The relation is analysed between migmatites and shear zones and the spatial distribution of leucogranitoid veins and dykes running through a footwall migmatite system, and reaching a transtensional shear zone operated under amphibolite- to greenschist-facies metamorphic conditions (Boa Fé shear zone, Variscan belt, SW Iberia). Statistical results show that the frequency of width and spacing of the leucogranitoid dykes conform to power-law distributions comparable with observations in volcanic systems. The fractal geometry of the distribution of leucogranitoid dykes highlights the development of a dense framework of thinner weakly or non-mineralized veins and dykes formed at higher nucleation/growth ratios in the footwall migmatite system that contrasts with the emplacement of thicker dykes associated with strongly mineralized thinner veins within the shear zone. The volume of injected leucogranitoid dykes in the shear zone is lower as compared with the footwall and is comparable with an expanding footwall shear zone with non-coaxial flow and volume increase. The Boa Fé shear zone seems to form a physical barrier to the transport of magma to the hanging wall

    Risk of Dengue for Tourists and Teams during the World Cup 2014 in Brazil

    Get PDF
    Abstract:Background:This year, Brazil will host about 600,000 foreign visitors during the 2014 FIFA World Cup. The concern of possible dengue transmission during this event has been raised given the high transmission rates reported in the past by this country.Methodology/Principal Findings:We used dengue incidence rates reported by each host city during previous years (2001-2013) to estimate the risk of dengue during the World Cup for tourists and teams. Two statistical models were used: a percentile rank (PR) and an Empirical Bayes (EB) model. Expected IR's during the games were generally low (<10/100,000) but predictions varied across locations and between models. Based on current ticket allocations, the mean number of expected symptomatic dengue cases ranged from 26 (PR, 10th-100th percentile: 5-334 cases) to 59 (EB, 95% credible interval: 30-77 cases) among foreign tourists but none are expected among teams. These numbers will highly depend on actual travel schedules and dengue immunity among visitors. Sensitivity analysis for both models indicated that the expected number of cases could be as low as 4 or 5 with 100,000 visitors and as high as 38 or 70 with 800,000 visitors (PR and EB, respectively).Conclusion/Significance:The risk of dengue among tourists during the World Cup is expected to be small due to immunity among the Brazil host population provided by last year's epidemic with the same DENV serotypes. Quantitative risk estimates by different groups and methodologies should be made routinely for mass gathering events. © 2014 van Panhuis et al

    Computer-Generated Ovaries to Assist Follicle Counting Experiments

    Get PDF
    Precise estimation of the number of follicles in ovaries is of key importance in the field of reproductive biology, both from a developmental point of view, where follicle numbers are determined at specific time points, as well as from a therapeutic perspective, determining the adverse effects of environmental toxins and cancer chemotherapeutics on the reproductive system. The two main factors affecting follicle number estimates are the sampling method and the variation in follicle numbers within animals of the same strain, due to biological variability. This study aims at assessing the effect of these two factors, when estimating ovarian follicle numbers of neonatal mice. We developed computer algorithms, which generate models of neonatal mouse ovaries (simulated ovaries), with characteristics derived from experimental measurements already available in the published literature. The simulated ovaries are used to reproduce in-silico counting experiments based on unbiased stereological techniques; the proposed approach provides the necessary number of ovaries and sampling frequency to be used in the experiments given a specific biological variability and a desirable degree of accuracy. The simulated ovary is a novel, versatile tool which can be used in the planning phase of experiments to estimate the expected number of animals and workload, ensuring appropriate statistical power of the resulting measurements. Moreover, the idea of the simulated ovary can be applied to other organs made up of large numbers of individual functional units

    A Method for Upscaling In Situ Soil Moisture Measurements to Satellite Footprint Scale Using Random Forests

    Get PDF
    Geophysical products generated from remotely sensed data require validation to evaluate their accuracy. Typically in situ measurements are used for validation, as is the case for satellite-derived soil moisture products. However, a large disparity in scales often exists between in situ measurements (covering meters to 10 s of meters) and satellite footprints (often hundreds of meters to several kilometers), making direct comparison difficult. Before using in situ measurements for validation, they must be “upscaled” to provide the mean soil moisture within the satellite footprint. There are a number of existing upscaling methods previously applied to soil moisture measurements, but many place strict requirements on the number and spatial distribution of soil moisture sensors difficult to achieve with permanent/semipermanent ground networks necessary for long-term validation efforts. A new method for upscaling is presented here, using Random Forests to fit a model between in situ measurements and a number of landscape parameters and variables impacting the spatial and temporal distributions of soil moisture. The method is specifically intended for validation of the NASA soil moisture active passive (SMAP) products at 36-, 9-, and 3-km scales. The method was applied to in situ data from the SoilSCAPE network in California, validated with data from the SMAPVEX12 campaign in Manitoba, Canada with additional verification from the TxSON network in Texas. For the SMAPVEX12 site, the proposed method was compared to extensive field measurements and was able to predict mean soil moisture over a large area more accurately than other upscaling approaches

    Persistence of magnetic field driven by relativistic electrons in a plasma

    Full text link
    The onset and evolution of magnetic fields in laboratory and astrophysical plasmas is determined by several mechanisms, including instabilities, dynamo effects and ultra-high energy particle flows through gas, plasma and interstellar-media. These processes are relevant over a wide range of conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion in stars. The disparate temporal and spatial scales where each operates can be reconciled by scaling parameters that enable to recreate astrophysical conditions in the laboratory. Here we unveil a new mechanism by which the flow of ultra-energetic particles can strongly magnetize the boundary between the plasma and the non-ionized gas to magnetic fields up to 10-100 Tesla (micro Tesla in astrophysical conditions). The physics is observed from the first time-resolved large scale magnetic field measurements obtained in a laser wakefield accelerator. Particle-in-cell simulations capturing the global plasma and field dynamics over the full plasma length confirm the experimental measurements. These results open new paths for the exploration and modelling of ultra high energy particle driven magnetic field generation in the laboratory

    Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues

    Get PDF
    Extracellular matrix (ECM) proteins play a key role during oligodendrogenesis. While fibronectin (FN) is involved in the maintenance and proliferation of oligodendrocyte progenitor cells (OPCs), merosin (MN) promotes differentiation into oligodendrocytes (OLs). Mechanical properties of the ECM also seem to affect OL differentiation, hence this study aimed to clarify the impact of combined biophysical and biochemical elements during oligodendrocyte differentiation and maturation using synthetic elastic polymeric ECM-like substrates. CG-4 cells presented OPC- or OL-like morphology in response to brain-compliant substrates functionalised with FN or MN, respectively. The expression of the differentiation and maturation markers myelin basic protein - MBP - and proteolipid protein - PLP - (respectively) by primary rat oligodendrocytes was enhanced in presence of MN, but only on brain-compliant conditions, considering the distribution (MBP) or amount (PLP) of the protein. It was also observed that maturation of OLs was attained earlier (by assessing PLP expression) by cells differentiated on MN-functionalised brain-compliant substrates than on standard culture conditions. Moreover, the combination of MN and substrate compliance enhanced the maturation and morphological complexity of OLs. Considering the distinct degrees of stiffness tested ranging within those of the central nervous system, our results indicate that 6.5 kPa is the most suitable rigidity for oligodendrocyte differentiation

    Daily alcohol intake triggers aberrant synaptic pruning leading to synapse loss and anxiety-like behavior

    Get PDF
    Alcohol abuse adversely affects the lives of millions of people worldwide. Deficits in synaptic transmission and in microglial function are commonly found in human alcohol abusers and in animal models of alcohol intoxication. Here, we found that a protocol simulating chronic binge drinking in male mice resulted in aberrant synaptic pruning and substantial loss of excitatory synapses in the prefrontal cortex, which resulted in increased anxiety-like behavior. Mechanistically, alcohol intake increased the engulfment capacity of microglia in a manner dependent on the kinase Src, the subsequent activation of the transcription factor NF-κB, and the consequent production of the proinflammatory cytokine TNF. Pharmacological blockade of Src activation or of TNF production in microglia, genetic ablation of Tnf, or conditional ablation of microglia attenuated aberrant synaptic pruning, thereby preventing the neuronal and behavioral effects of the alcohol. Our data suggest that aberrant pruning of excitatory synapses by microglia may disrupt synaptic transmission in response to alcohol abuse.This work was financed by FEDER -Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 -Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-030647 (PTDC/SAU-TOX/30647/2017) in TS lab. The projects FEDER Portugal (Norte-01-0145-FEDER-000008000008—Porto Neurosciences and Neurologic Disease Research Initiative at I3S, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); FCOMP-01-0124-FEDER-021333) and FCT (PTDC/MED-NEU/31318/2017) supported work in JBR lab. CCP and RS hold employment contracts financed by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., in the context of the program-contract described in paragraphs 4, 5 and 6 of art. 23 of Law no. 57/2016, of August 29, as amended by Law no. 57/2017 of July 2019. TC is supported by FCT (SFRH/BD/117148/2016). RLA was supported by FCT (PD/BD/114266/2016). AM was supported by FCT (IF/00753/2014). Author contributions: RS, TS, and JBR designed the project. RS, JFH, CCP, TOA, JTM, RLA, TC, CS, and AM performed experiments. RS, TS, and JBR co-supervised the study. RS and JBR wrote the original draft. RS, CCP, TS, and JBR reviewed and edited the manuscript. TS and JBR acquired funding

    Wandering behaviour prevents inter and intra oceanic speciation in a coastal pelagic fish

    Get PDF
    Small pelagic fishes have the ability to disperse over long distances and may present complex evolutionary histories. Here, Old World Anchovies (OWA) were used as a model system to understand genetic patterns and connectivity of fish between the Atlantic and Pacific basins. We surveyed 16 locations worldwide using mtDNA and 8 microsatellite loci for genetic parameters, and mtDNA (cyt b; 16S) and nuclear (RAG1; RAG2) regions for dating major lineage-splitting events within Engraulidae family. The OWA genetic divergences (0-0.4%) are compatible with intra-specific divergence, showing evidence of both ancient and contemporary admixture between the Pacific and Atlantic populations, enhanced by high asymmetrical migration from the Pacific to the Atlantic. The estimated divergence between Atlantic and Pacific anchovies (0.67 [0.53-0.80] Ma) matches a severe drop of sea temperature during the Gunz glacial stage of the Pleistocene. Our results support an alternative evolutionary scenario for the OWA, suggesting a coastal migration along south Asia, Middle East and eastern Africa continental platforms, followed by the colonization of the Atlantic via the Cape of the Good Hope.Portuguese Foundation for Science & Technology (FCT) [SFRH/BD/36600/2007]; FCT [UID/MAR/04292/2013, SFRH/BPD/65830/2009]; FCT strategic plan [UID/Multi/04326/2013]info:eu-repo/semantics/publishedVersio
    corecore