55 research outputs found

    Alphavirus replicon particles containing the gene for HER2/neu inhibit breast cancer growth and tumorigenesis

    Get PDF
    INTRODUCTION: Overexpression of the HER2/neu gene in breast cancer is associated with an increased incidence of metastatic disease and with a poor prognosis. Although passive immunotherapy with the humanized monoclonal antibody trastuzumab (Herceptin) has shown some effect, a vaccine capable of inducing T-cell and humoral immunity could be more effective. METHODS: Virus-like replicon particles (VRP) of Venezuelan equine encephalitis virus containing the gene for HER2/neu (VRP-neu) were tested by an active immunotherapeutic approach in tumor prevention models and in a metastasis prevention model. RESULTS: VRP-neu prevented or significantly inhibited the growth of HER2/neu-expressing murine breast cancer cells injected either into mammary tissue or intravenously. Vaccination with VRP-neu completely prevented tumor formation in and death of MMTV-c-neu transgenic mice, and resulted in high levels of neu-specific CD8(+ )T lymphocytes and serum IgG. CONCLUSION: On the basis of these findings, clinical testing of this vaccine in patients with HER2/neu(+ )breast cancer is warranted

    Can Monkeys Make Investments Based on Maximized Pay-off?

    Get PDF
    Animals can maximize benefits but it is not known if they adjust their investment according to expected pay-offs. We investigated whether monkeys can use different investment strategies in an exchange task. We tested eight capuchin monkeys (Cebus apella) and thirteen macaques (Macaca fascicularis, Macaca tonkeana) in an experiment where they could adapt their investment to the food amounts proposed by two different experimenters. One, the doubling partner, returned a reward that was twice the amount given by the subject, whereas the other, the fixed partner, always returned a constant amount regardless of the amount given. To maximize pay-offs, subjects should invest a maximal amount with the first partner and a minimal amount with the second. When tested with the fixed partner only, one third of monkeys learned to remove a maximal amount of food for immediate consumption before investing a minimal one. With both partners, most subjects failed to maximize pay-offs by using different decision rules with each partner' quality. A single Tonkean macaque succeeded in investing a maximal amount to one experimenter and a minimal amount to the other. The fact that only one of over 21 subjects learned to maximize benefits in adapting investment according to experimenters' quality indicates that such a task is difficult for monkeys, albeit not impossible

    The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

    Get PDF
    Background: Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates.Results: We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution.Conclusions: We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution

    Wild chimpanzees modify modality of gestures according to the strength of social bonds and personal network size

    Get PDF
    Primates form strong and enduring social bonds with others and these bonds have important fitness consequences. However, how different types of communication are associated with different types of social bonds is poorly understood. Wild chimpanzees have a large repertoire of gestures, from visual gestures to tactile and auditory gestures. We used social network analysis to examine the association between proximity bonds (time spent in close proximity) and rates of gestural communication in pairs of chimpanzees when the intended recipient was within 10 m of the signaller. Pairs of chimpanzees with strong proximity bonds had higher rates of visual gestures, but lower rates of auditory long-range and tactile gestures. However, individual chimpanzees that had a larger number of proximity bonds had higher rates of auditory and tactile gestures and lower rates of visual gestures. These results suggest that visual gestures may be an efficient way to communicate with a small number of regular interaction partners, but that tactile and auditory gestures may be more effective at communicating with larger numbers of weaker bonds. Increasing flexibility of communication may have played an important role in managing differentiated social relationships in groups of increasing size and complexity in both primate and human evolution

    Cognitive performance is linked to group size and affects fitness in Australian magpies

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordThe social intelligence hypothesis states that the demands of social life drive cognitive evolution. This idea receives support from comparative studies that link variation in group size or mating systems with cognitive and neuroanatomical differences across species, but findings are contradictory and contentious. To understand the cognitive consequences of sociality, it is also important to investigate social variation within species. Here we show that in wild, cooperatively breeding Australian magpies, individuals that live in large groups show increased cognitive performance, which is linked to increased reproductive success. Individual performance was highly correlated across four cognitive tasks, indicating a 'general intelligence factor' that underlies cognitive performance. Repeated cognitive testing of juveniles at different ages showed that the correlation between group size and cognition emerged in early life, suggesting that living in larger groups promotes cognitive development. Furthermore, we found a positive association between the task performance of females and three indicators of reproductive success, thus identifying a selective benefit of greater cognitive performance. Together, these results provide intraspecific evidence that sociality can shape cognitive development and evolution.This work was funded by an ARC Discovery grant awarded to A.R.R., A.T. and M. B. V. Bell, and a University of Western Australia International Postgraduate Research Scholarship and Endeavour Research Fellowship awarded to B.J.A. A.T. received additional support from a BBSRC David Phillips Fellowship (BB/H021817/1)

    Efficient Delivery of DNA Using Lipid Nanoparticles

    Get PDF
    DNA vaccination has been extensively studied as a promising strategy for tumor treatment. Despite the efforts, the therapeutic efficacy of DNA vaccines has been limited by their intrinsic poor cellular internalization. Electroporation, which is based on the application of a controlled electric field to enhance DNA penetration into cells, has been the method of choice to produce acceptable levels of gene transfer in vivo. However, this method may cause cell damage or rupture, non-specific targeting, and even degradation of pDNA. Skin irritation, muscle contractions, pain, alterations in skin structure, and irreversible cell damage have been frequently reported. To overcome these limitations, in this work, we use a microfluidic platform to generate DNA-loaded lipid nanoparticles (LNPs) which are then characterized by a combination of dynamic light scattering (DLS), synchrotron small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). Despite the clinical successes obtained by LNPs for mRNA and siRNA delivery, little is known about LNPs encapsulating bulkier DNA molecules, the clinical application of which remains challenging. For in vitro screening, LNPs were administered to human embryonic kidney 293 (HEK-293) and Chinese hamster ovary (CHO) cell lines and ranked for their transfection efficiency (TE) and cytotoxicity. The LNP formulation exhibiting the highest TE and the lowest cytotoxicity was then tested for the delivery of the DNA vaccine pVAX-hECTM targeting the human neoantigen HER2, an oncoprotein overexpressed in several cancer types. Using fluorescence-activated cell sorting (FACS), immunofluorescence assays and fluorescence confocal microscopy (FCS), we proved that pVAX-hECTM-loaded LNPs produce massive expression of the HER2 antigen on the cell membrane of HEK-293 cells. Our results provide new insights into the structure-activity relationship of DNA-loaded LNPs and pave the way for the access of this gene delivery technology to preclinical studies

    Continuous flow peritoneal dialysis: Is there a need for it?

    No full text
    Automated peritoneal dialysis (APD) is the fastest growing technique of peritoneal dialysis. However, recently APD has displayed some limitations imposed by the characteristics of the technique and by the characteristics of the peritoneal membrane of some patients. In general, the advent of a new technique such as continuous flow peritoneal dialysis (CFPD) should be seen as a benefit for several patients based on different considerations: CFPD is a high-efficiency technique which could overcome some of the limitations imposed by other techniques in terms of adequacy targets and performance. CFPD may become a useful tool to keep patients on PD who would otherwise be transferred to hemodialysis. CFPD may present advantages in terms of biocompatibility and also in terms of the possible modulation of the peritoneal solution to patient needs. Recent developments in technology seem to have made CFPD easily feasible and well tolerated. A new era of PD is probably beginning and CFPD will definitely represent one of the key issues in the future of PD

    Identification of Relevant Conformational Epitopes on the HER2 Oncoprotein by Using Large Fragment Phage Display (LFPD)

    Get PDF
    <div><p>We developed a new phage-display based approach, the Large Fragment Phage Display (LFPD), that can be used for mapping conformational epitopes on target molecules of immunological interest. LFPD uses a simplified and more effective phage-display approach in which only a limited set of larger fragments (about 100 aa in length) are expressed on the phage surface. Using the human HER2 oncoprotein as a target, we identified novel B-cell conformational epitopes. The same homologous epitopes were also detected in rat HER2 and all corresponded to the epitopes predicted by computational analysis (PEPITO software), showing that LFPD gives reproducible and accurate results. Interestingly, these newly identified HER2 epitopes seem to be crucial for an effective immune response against HER2-overexpressing breast cancers and might help discriminating between metastatic breast cancer and early breast cancer patients. Overall, the results obtained in this study demonstrated the utility of LFPD and its potential application to the detection of conformational epitopes on many other molecules of interest, as well as, the development of new and potentially more effective B-cell conformational epitopes based vaccines.</p> </div
    corecore