46 research outputs found

    Tackling tuberculosis: insights from an international TB Summit in London

    Get PDF
    Tuberculosis (TB) poses a grave predicament to the world as it is not merely a scientific challenge but a socio-economic burden as well. A prime cause of mortality in human due to an infectious disease; the malady and its cause, Mycobacterium tuberculosis have remained an enigma with many questions that remain unanswered. The ability of the pathogen to survive and switch between varied physiological states necessitates a protracted therapeutic regimen that exerts an excessive strain on low-resource countries. To complicate things further, there has been a significant rise of antimicrobial resistance. Existing control measures, including treatment regimens have remained fairly uniform globally for at least half a century and require reinvention. Overcoming the societal and scientific challenges requires an increase in dialog to identify key regions that need attention and effective partners with whom successful collaborations can be fostered. In this report, we explore the discussions held at the International TB Summit 2015 hosted by EuroSciCon, which served as an excellent platform for researchers to share their recent findings. Ground-breaking results require outreach to affect policy design, governance and control of the disease. Hence, we feel it is important that meetings such as these reach a wider, global audience

    Experimental Mycobacterium bovis infection in three white rhinoceroses (Ceratotherium simum):Susceptibility, clinical and anatomical pathology

    Get PDF
    Tuberculosis caused by Mycobacterium bovis is endemic in the African buffalo (Syncerus caffer) population in the Kruger National Park and other conservation areas in South Africa. The disease has been diagnosed in a total of 21 free ranging or semi-free ranging wildlife species in the country with highly variable presentations in terms of clinical signs as well as severity and distribution of tuberculous lesions. Most species are spillover or dead-end hosts without significant role in the epidemiology of the disease. White rhinoceroses (Ceratotherium simum) are translocated from the Kruger National Park in substantial numbers every year and a clear understanding of their risk to manifest overt tuberculosis disease and to serve as source of infection to other species is required. We report the findings of experimental infection of three white rhinoceroses with a moderately low dose of a virulent field isolate of Mycobacterium bovis. None of the animals developed clinical signs or disseminated disease. The susceptibility of the white rhinoceros to bovine tuberculosis was confirmed by successful experimental infection based on the ante mortem isolation of M. bovis from the respiratory tract of one rhinoceros, the presence of acid-fast organisms and necrotizing granulomatous lesions in the tracheobronchial lymph nodes and the detection of M. bovis genetic material by PCR in the lungs of two animals

    A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101

    Get PDF
    Trichodesmium is a globally important marine diazotroph that accounts for approximately 60-80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt

    Fas-Mediated Apoptosis Regulates the Composition of Peripheral αβ T Cell Repertoire by Constitutively Purging Out Double Negative T Cells

    Get PDF
    BACKGROUND: The Fas pathway is a major regulator of T cell homeostasis, however, the T cell population that is controlled by the Fas pathway in vivo is poorly defined. Although CD4 and CD8 single positive (SP) T cells are the two major T cell subsets in the periphery of wild type mice, the repertoire of mice bearing loss-of-function mutation in either Fas (lpr mice) or Fas ligand (gld mice) is predominated by CD4(-)CD8(-) double negative alphabeta T cells that also express B220 and generally referred to as B220+DN T cells. Despite extensive analysis, the basis of B220+DN T cell lymphoproliferation remains poorly understood. In this study we re-examined the issue of why T cell lymphoproliferation caused by gld mutation is predominated by B220+DN T cells. METHODOLOGY AND PRINCIPAL FINDINGS: We combined the following approaches to study this question: Gene transcript profiling, BrdU labeling, and apoptosis assays. Our results show that B220+DN T cells are proliferating and dying at exceptionally high rates than SP T cells in the steady state. The high proliferation rate is restricted to B220+DN T cells found in the gut epithelium whereas the high apoptosis rate occurred both in the gut epithelium and periphery. However, only in the periphery, apoptosis of B220+DN T cell is Fas-dependent. When the Fas pathway is genetically impaired, apoptosis of peripheral B220+DN T cells was reduced to a baseline level similar to that of SP T cells. Under these conditions of normalized apoptosis, B220+DN T cells progressively accumulate in the periphery, eventually resulting in B220+DN T cell lymphoproliferation. CONCLUSIONS/SIGNIFICANCE: The Fas pathway plays a critical role in regulating the tissue distribution of DN T cells through targeting and elimination of DN T cells from the periphery in the steady state. The results provide new insight into pathogenesis of DN T cell lymphoproliferation

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
    corecore