338 research outputs found

    The origin of aubrites: Evidence from lithophile trace element abundances and oxygen isotope compositions

    Get PDF
    We report the abundances of a selected set of “lithophile” trace elements (including lanthanides, actinides and high field strength elements) and high-precision oxygen isotope analyses of a comprehensive suite of aubrites. Two distinct groups of aubrites can be distinguished: (a) the main-group aubrites display flat or light-REE depleted REE patterns with variable Eu and Y anomalies; their pyroxenes are light-REE depleted and show marked negative Eu anomalies; (b) the Mount Egerton enstatites and the silicate fraction from Larned display distinctive light-REE enrichments, and high Th/Sm ratios; Mount Egerton pyroxenes have much less pronounced negative Eu anomalies than pyroxenes from the main-group aubrites. Leaching experiments were undertaken to investigate the contribution of sulfides to the whole rock budget of the main-group aubrites. Sulfides contain in most cases at least 50% of the REEs and of the actinides. Among the elements we have analyzed, those displaying the strongest lithophile behaviors are Rb, Ba, Sr and Sc. The homogeneity of the Δ17O values obtained for main-group aubrite falls [Δ17O = +0.009 ± 0.010‰ (2σ)] suggests that they originated from a single parent body whose differentiation involved an early phase of large-scale melting that may have led to the development of a magma ocean. This interpretation is at first glance in agreement with the limited variability of the shapes of the REE patterns of these aubrites. However, the trace element concentrations of their phases cannot be used to discuss this hypothesis, because their igneous trace-element signatures have been modified by subsolidus exchange. Finally, despite similar O isotopic compositions, the marked light-REE enrichments displayed by Mount Egerton and Larned suggest that they are unrelated to the main-group aubrites and probably originated from a distinct parent body

    On slip pulses at a sheared frictional viscoelastic/ non deformable interface

    Full text link
    We study the possibility for a semi-infinite block of linear viscoelastic material, in homogeneous frictional contact with a non-deformable one, to slide under shear via a periodic set of ``self-healing pulses'', i.e. a set of drifting slip regions separated by stick ones. We show that, contrary to existing experimental indications, such a mode of frictional sliding is impossible for an interface obeying a simple local Coulomb law of solid friction. We then discuss possible physical improvements of the friction model which might open the possibility of such dynamics, among which slip weakening of the friction coefficient, and stress the interest of developing systematic experimental investigations of this question.Comment: 23 pages, 3 figures. submitted to PR

    Coupling of acoustic cavitation with DEM-based particle solvers for modeling de-agglomeration of particle clusters in liquid metals

    Get PDF
    The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used via an immersed sonotrode, or alternatively via electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters’ breakup by cavitation

    Simulations of the Static Friction Due to Adsorbed Molecules

    Full text link
    The static friction between crystalline surfaces separated by a molecularly thin layer of adsorbed molecules is calculated using molecular dynamics simulations. These molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. Crystalline alignment, sliding direction, and the number of adsorbed molecules are not controlled in most experiments and are shown to have little effect on the friction. Temperature, molecular geometry and interaction potentials can have larger effects on friction. The observed trends in friction can be understood in terms of a simple hard sphere model.Comment: 13 pages, 13 figure

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    In search of green political economy: steering markets, innovation and the case of the zero carbon homes agenda in England

    Get PDF
    Advocates of a democratic ‘Green state’ challenge Hayekian free-market environmentalist proposals for a minimal state and the emphasis of ecological modernisation discourses on technological innovation as the primary route towards ecological sustainability. However, these more strongly pro-market traditions raise important questions and provide useful insights concerning the challenges of translating the political ideology of ‘ecologism’ into practical proposals for democratic governance. Hayekian thought raises vital questions concerning the capacity of political processes to address complex challenges of coordinating the formulation and delivery of the sustainability objectives of ecologism. Scholarship on ecological modernisation and the ‘new regulation’ offer important insights into how shifting interrelationships between the state and private sector in the policy process might enable this challenge to be more effectively addressed. These areas for further developing proposals for a Green state are illustrated here through a case study of the zero carbon homes policy agenda in England

    Infancy, autism, and the emergence of a socially disordered body

    Get PDF
    Twenty academic psychologists and neuroscientists, with an interest in autism and based within the United Kingdom, were interviewed between 2012 and 2013 on a variety of topics related to the condition. Within these qualitative interviews researchers often argued that there had been a ‘turn to infancy’ since the beginning of the 21st century with focus moving away from the high functioning adolescent and towards the pre-diagnostic infant deemed to be ‘at risk’ of autism. The archetypal research of this type is the ‘infant sibs’ study whereby infants with an elder sibling already diagnosed with autism are subjected to a range of tests, the results of which are examined only once it becomes apparent whether that infant has autism. It is claimed in this paper that the turn to infancy has been facilitated by two phenomena; the autism epidemic of the 1990s and the emergence of various methodological techniques, largely although not exclusively based within neuroscience, which seek to examine social disorder in the absence of comprehension or engagement on the part of the participant: these are experiments done to participants rather than with them. Interviewees claimed that these novel methods allowed researchers to see a ‘real’ autism that lay ‘behind’ methodology. That claim is disputed here and instead it is argued that these emerging methodologies other various phenomena, reorienting the social abnormality believed typical of autism away from language and meaning and towards the body. The paper concludes by suggesting that an attempt to draw comparisons between the symptoms of autism in infant populations and adults with the condition inevitably leads to a somaticisation of autism

    Fast Neutron Detection with 6Li-loaded Liquid Scintillator

    Full text link
    We report on the development of a fast neutron detector using a liquid scintillator doped with enriched Li-6. The lithium was introduced in the form of an aqueous LiCl micro-emulsion with a di-isopropylnaphthalene-based liquid scintillator. A Li-6 concentration of 0.15 % by weight was obtained. A 125 mL glass cell was filled with the scintillator and irradiated with fission-source neutrons. Fast neutrons may produce recoil protons in the scintillator, and those neutrons that thermalize within the detector volume can be captured on the Li-6. The energy of the neutron may be determined by the light output from recoiling protons, and the capture of the delayed thermal neutron reduces background events. In this paper, we discuss the development of this 6Li-loaded liquid scintillator, demonstrate the operation of it in a detector, and compare its efficiency and capture lifetime with Monte Carlo simulations. Data from a boron-loaded plastic scintillator were acquired for comparison. We also present a pulse-shape discrimination method for differentiating between electronic and nuclear recoil events based on the Matusita distance between a normalized observed waveform and nuclear and electronic recoil template waveforms. The details of the measurements are discussed along with specifics of the data analysis and its comparison with the Monte Carlo simulation
    • 

    corecore