148 research outputs found

    Identification of clonal hematopoiesis mutations in solid tumor patients undergoing unpaired next-generation sequencing assays

    Get PDF
    Purpose: In this era of precision-based medicine, for optimal patient care, results reported from commercial next-generation sequencing (NGS) assays should adequately reflect the burden of somatic mutations in the tumor being sequenced. Here, we sought to determine the prevalence of clonal hematopoiesis leading to possible misattribution of tumor mutation calls on unpaired Foundation Medicine NGS assays. Experimental Design: This was a retrospective cohort study of individuals undergoing NGS of solid tumors from two large cancer centers. We identified and quantified mutations in genes known to be frequently altered in clonal hematopoiesis (DNMT3A, TET2, ASXL1, TP53, ATM, CHEK2, SF3B1, CBL, JAK2) that were returned to physicians on clinical Foundation Medicine reports. For a subset of patients, we explored the frequency of true clonal hematopoiesis by comparing mutations on Foundation Medicine reports with matched blood sequencing. Results: Mutations in genes that are frequently altered in clonal hematopoiesis were identified in 65% (1,139/1,757) of patients undergoing NGS. When excluding TP53, which is often mutated in solid tumors, these events were still seen in 35% (619/1,757) of patients. Utilizing paired blood specimens, we were able to confirm that 8% (18/226) of mutations reported in these genes were true clonal hematopoiesis events. The majority of DNMT3A mutations (64%, 7/11) and minority of TP53 mutations (4%, 2/50) were clonal hematopoiesis. Conclusions: Clonal hematopoiesis mutations are commonly reported on unpaired NGS testing. It is important to recognize clonal hematopoiesis as a possible cause of misattribution of mutation origin when applying NGS findings to a patient's care

    Antiviral and clinical activity of bamlanivimab in a randomized trial of non-hospitalized adults with COVID-19

    Get PDF
    Anti-SARS-CoV-2 monoclonal antibodies are mainstay COVID-19 therapeutics. Safety, antiviral, and clinical efficacy of bamlanivimab were evaluated in the randomized controlled trial ACTIV-2/A5401. Non-hospitalized adults were randomized 1:1 within 10 days of COVID-19 symptoms to bamlanivimab or blinded-placebo in two dose-cohorts (7000 mg, n = 94; 700 mg, n = 223). No differences in bamlanivimab vs placebo were observed in the primary outcomes: proportion with undetectable nasopharyngeal SARS-CoV-2 RNA at days 3, 7, 14, 21, and 28 (risk ratio = 0.82-1.05 for 7000 mg [p(overall) = 0.88] and 0.81-1.21 for 700 mg [p(overall) = 0.49]), time to symptom improvement (median 21 vs 18.5 days [p = 0.97], 7000 mg; 24 vs 20.5 days [p = 0.08], 700 mg), or grade 3+ adverse events. However, bamlanivimab was associated with lower day 3 nasopharyngeal viral levels and faster reductions in inflammatory markers and viral decay by modeling. This study provides evidence of faster reductions in nasopharyngeal SARS-CoV-2 RNA levels but not shorter symptom durations in non-hospitalized adults with early variants of SARS-CoV-2

    Monoclonal antibody treatment drives rapid culture conversion in SARS-CoV-2 infection

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs) are among the treatments recommended for high-risk ambulatory persons with coronavirus 2019 (COVID-19). Here, we study viral culture dynamics post-treatment in a subset of participants receiving the mAb bamlanivimab in the ACTIV-2 trial (ClinicalTrials.gov: NCT04518410). Viral load by qPCR and viral culture are performed from anterior nasal swabs collected on study days 0 (day of treatment), 1, 2, 3, and 7. Treatment with mAbs results in rapid clearance of culturable virus. One day after treatment, 0 of 28 (0%) participants receiving mAbs and 16 of 39 (41%) receiving placebo still have culturable virus (p < 0.0001). Recrudescence of culturable virus is detected in three participants with emerging mAb resistance and viral RNA rebound. While further studies are necessary to fully define the relationship between shed culturable virus and transmission, these results raise the possibility that mAbs may offer immediate (household) and public-health benefits by reducing onward transmission., Using longitudinal samples from the ACTIV-2 clinical trial of the monoclonal antibody bamlinivimab, Boucau et al. investigate the duration of shedding culturable virus. Treatment with monoclonal antibody results in rapid clearance of culturable virus. The emergence of mutations in a subset of participants coincides with viral rebound and resurgent culturable virus

    Study of the lineshape of the chi(c1) (3872) state

    Get PDF
    A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations

    Measurement of the CKM angle γγ in B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm \to D π^\pm decays with DKS0h+hD \to K_\mathrm S^0 h^+ h^-

    Get PDF
    A measurement of CPCP-violating observables is performed using the decays B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm\to D \pi^\pm, where the DD meson is reconstructed in one of the self-conjugate three-body final states KSπ+πK_{\mathrm S}\pi^+\pi^- and KSK+KK_{\mathrm S}K^+K^- (commonly denoted KSh+hK_{\mathrm S} h^+h^-). The decays are analysed in bins of the DD-decay phase space, leading to a measurement that is independent of the modelling of the DD-decay amplitude. The observables are interpreted in terms of the CKM angle γ\gamma. Using a data sample corresponding to an integrated luminosity of 9fb19\,\text{fb}^{-1} collected in proton-proton collisions at centre-of-mass energies of 77, 88, and 13TeV13\,\text{TeV} with the LHCb experiment, γ\gamma is measured to be (68.75.1+5.2)\left(68.7^{+5.2}_{-5.1}\right)^\circ. The hadronic parameters rBDKr_B^{DK}, rBDπr_B^{D\pi}, δBDK\delta_B^{DK}, and δBDπ\delta_B^{D\pi}, which are the ratios and strong-phase differences of the suppressed and favoured B±B^\pm decays, are also reported

    Study of the doubly charmed tetraquark T+cc

    Get PDF
    Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T+cc tetraquark with a quark content of ccu⎯⎯⎯d⎯⎯⎯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector T+cc state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T+cc state. In addition, an unexpected dependence of the production rate on track multiplicity is observed

    Universities, the science base and the innovation performance of the UK

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:3487.33402(no 5) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore