349 research outputs found
Recommended from our members
Thermal-Expansion and Fracture Toughness Properties ofParts made from Liquid Crystal Stereolithography Resins
Liquid crystal (LC) resins are a new kind ofstereolithography material that can produce
parts with structured or ordered morphologies instead ofthe amorphous morphologies that result
from standard resins. The LC molecules can be aligned before cure resulting in an anisotropic
crosslinked network when the laser induced polymerization "locks-in" the alignment. Previous
papers have explored liquid crystal orientation dynamics [1], the effects of orientation on viscoelastic and mechanical properties [2,3], and the processing ofLC resins by stereolithography [4].
This paper considers the effects ofmorphology on fracture toughness and thermal-expansion
properties. Both toughness and thermal-stability continue to be important issues for
stereolithography parts. The use ofLC resins may provide a way to significantly improve
performance in both ofthese areas, and in addition result in parts with high upper use .
temperatures.Mechanical Engineerin
Sp1 acetylation is associated with loss of DNA binding at promoters associated with cell cycle arrest and cell death in a colon cell line
Butyrate, a known histone deacetylase inhibitor (HDACi) and product of fibre fermentation, is postulated to mediate the protective effect of dietary fibre against colon cancer. The transcription factor Sp1 is a target of acetylation and is known to be associated with class I HDACs, including HDAC1. Sp1 is a ubiquitous transcription factor and Sp1-regulated genes include those involved in cell cycle regulation, apoptosis and lipogenesis: all major pathways in cancer development. The only known acetylated residue of Sp1 is lysine703 which resides in the DNA binding domain. Here we show that acetylated Sp1 loses p21- and bak-promoter -binding function in vitro. Furthermore treatment with a panel of HDAC inhibitors showed clustering of activities for a subset of inhibitors, causing G2 cell cycle arrest, Sp1 acetylation, p21 and Bak over-expression, all with very similar EC50 concentrations. These HDACi activities were not distributed according to the molecular class of compound. In order to mimic loss of binding, an siRNA strategy was used to reduce Sp1 expression. This resulted in altered expression of multiple elements of the p53/p21 pathway. Taken together our data suggest a mechanistic model for the chemopreventive actions of butyrate in colon epithelial cells, and provide new insight into the differential activities some classes of HDAC inhibitors
Modelling fine scale route choice of upstream migrating fish as they approach an instream structure
This study used pattern-oriented modelling (POM) to investigate the space use and behavioural response of upstream migrating European river lamprey (Lampetra fluviatilis) to the two-dimensional hydrodynamic conditions created by an instream structure (triangular profile gauging weir). Passive Integrated Transponder (PIT) and acoustic telemetry were used to map the spatial-temporal distribution patterns of lamprey as they migrated upstream. Acoustic Doppler velocimetry and computer modelling were used to quantify the hydrodynamic environment. In adherence with the POM methodology, multiple movement models, incorporating increasingly complex environmental feedback mechanisms and behavioural rules were created and systematically assessed to identify which factors might reproduce the observed patterns. The best model was a spatially explicit Eulerian-Lagrangian Individual Based Model (IBM) that included two simple behaviours: 1) tortuous non-directed swimming when in low flow velocity (< 0.1 m sâ1) and 2) persistent directed (against the flow) swimming in moderate to high flow velocity (â„ 0.1 m sâ1). The POM indicated that flow heterogeneity was an important influence of lamprey space use and that simple behavioural rules (i.e. two separate movement behaviours in response to flow velocity) were sufficient to reproduce the main movement pattern observed: avoidance of flow recirculating regions near the banks. The combination of field telemetry, hydrodynamic modelling and POM provided a useful framework for systematically identifying the key factors (hydrodynamic and behavioural) that governed the space use of the target species and would likely work well for investigating similar relationships in other aquatic species
Bose-Einstein condensation for interacting scalar fields in curved spacetime
We consider the model of self-interacting complex scalar fields with a rigid
gauge invariance under an arbitrary gauge group . In order to analyze the
phenomenon of Bose-Einstein condensation finite temperature and the possibility
of a finite background charge is included. Different approaches to derive the
relevant high-temperature behaviour of the theory are presented.Comment: 28 pages, LaTe
Recommended from our members
Slow and fast single photons from a quantum dot interacting with the excited state hyperfine structure of the Cesium D1-line
Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution. Single photons are generated from a single In(Ga)As quantum dot with its excitonic transition precisely set relative to the Cesium D1 transition. The delay of spectral components of the single-photon wave packet with almost Fourier-limited width is investigated in detail with a 200 MHz narrow-band monolithic Fabry-PĂ©rot resonator. Reflecting the excited state hyperfine structure of Cesium, âslow lightâ and âfast lightâ behavior is observed. As a step towards room-temperature alkali vapor memories, quantum dot photons are delayed for 5 ns by strong dispersion between the two 1.17 GHz hyperfine-split excited state transitions. Based on optical pumping on the hyperfine-split ground states, we propose a simple, all-optically controllable delay for synchronization of heralded narrow-band photons in a quantum network
Bose-Einstein Condensation and Free DKP field
The thermodynamical partition function of the Duffin-Kemmer-Petiau theory is
evaluated using the imaginary-time formalism of quantum field theory at finite
temperature and path integral methods. The DKP partition function displays two
features: (i) full equivalence with the partition function for charged scalar
particles and charged massive spin 1 particles; and (ii) the zero mode sector
which is essential to reproduce the well-known relativistic Bose-Einstein
condensation for both theories.Comment: 12 pages, 2 eps figures. To be published in Physics Letter
Understanding the process of psychological development in youth athletes attending an intensive wrestling camp
This study used a grounded theory methodology to understand if and how psychological development in youth athletes was facilitated by an âintensiveâ summer wrestling camp experience. The theoretical sampling approach involved 10 athlete participants of the camp, nine parents of athletes, the director of the camp, and four camp staff members, who took part in a series of interviews before, during, and after the camp. Two researchers were also embedded in the camp and attended all sessions, took detailed notes, collected camp materials, and conducted observations. Following a grounded theory analysis approach, a model is presented that outlines how youth participantsâ developed psychological qualities from the coach created hallenges and adversity that were systematically designed to facilitate sport performance enhancement and life skills. Variations emerged in psychological antecedents and characteristics, how the challenging wrestling camp environment was interpreted and experienced, and how learning was transferred to sport and life domains outside of the wrestling camp. This study provided insight into a unique youth sport context that was able to simultaneously develop psychological qualities to be used as sport performance enhancement and life skills
Implementation of a pharmacogenomics consult service to support the INGENIOUS trial
Hospital systems increasingly utilize pharmacogenomic testing to inform clinical prescribing. Successful implementation efforts have been modeled at many academic centers. In contrast, this report provides insights into the formation of a pharmacogenomics consultation service at a safety-net hospital, which predominantly serves low-income, uninsured, and vulnerable populations. The report describes the INdiana GENomics Implementation: an Opportunity for the UnderServed (INGENIOUS) trial and addresses concerns of adjudication, credentialing, and funding
Understanding Galaxy Formation and Evolution
The old dream of integrating into one the study of micro and macrocosmos is
now a reality. Cosmology, astrophysics, and particle physics intersect in a
scenario (but still not a theory) of cosmic structure formation and evolution
called Lambda Cold Dark Matter (LCDM) model. This scenario emerged mainly to
explain the origin of galaxies. In these lecture notes, I first present a
review of the main galaxy properties, highlighting the questions that any
theory of galaxy formation should explain. Then, the cosmological framework and
the main aspects of primordial perturbation generation and evolution are
pedagogically detached. Next, I focus on the ``dark side'' of galaxy formation,
presenting a review on LCDM halo assembling and properties, and on the main
candidates for non-baryonic dark matter. It is shown how the nature of
elemental particles can influence on the features of galaxies and their
systems. Finally, the complex processes of baryon dissipation inside the
non-linearly evolving CDM halos, formation of disks and spheroids, and
transformation of gas into stars are briefly described, remarking on the
possibility of a few driving factors and parameters able to explain the main
body of galaxy properties. A summary and a discussion of some of the issues and
open problems of the LCDM paradigm are given in the final part of these notes.Comment: 50 pages, 10 low-resolution figures (for normal-resolution, DOWNLOAD
THE PAPER (PDF, 1.9 Mb) FROM http://www.astroscu.unam.mx/~avila/avila.pdf).
Lectures given at the IV Mexican School of Astrophysics, July 18-25, 2005
(submitted to the Editors on March 15, 2006
- âŠ