2,323 research outputs found

    High-resolution X-ray spectroscopy of tau Scorpii (B0.2V) with XMM-Newton

    Get PDF
    We report the analysis of the first high-resolution X-ray spectrum of the B0.2V star τ Scorpii obtained with the Reflection Grating Spectrometers (rg

    Nuclear Spin-Isospin Correlations, Parity Violation, and the fπf_\pi Problem

    Get PDF
    The strong interaction effects of isospin- and spin-dependent nucleon-nucleon correlations observed in many-body calculations are interpreted in terms of a one-pion exchange mechanism. Including such effects in computations of nuclear parity violating effects leads to enhancements of about 10%. A larger effect arises from the one-boson exchange nature of the parity non-conserving nucleon- nucleon interaction, which depends on both weak and strong meson-nucleon coupling constants. Using values of the latter that are constrained by nucleon-nucleon phase shifts leads to enhancements of parity violation by factors close to two. Thus much of previously noticed discrepancies between weak coupling constants extracted from different experiments can be removed.Comment: 8 pages 2 figures there should have been two figures in v

    Increasing rates of fluoroquinolone resistance in escherichia coli isolated from the blood and urine of patients with hematologic malignancies and stem cell transplant recipients

    Get PDF
    Fluoroquinolone (FQ) antibiotics have been shown to reduce mortality and the number of febrile episodes when used as prophylaxis during neutropenia. Prior studies suggest that prophylaxis may result in increasing rates of FQ resistance. Fluoroquinolone non-susceptibility trends in Escherichia coli isolated from blood and urine cultures were evaluated over a 16-year period during which prophylaxis was initiated in patients with hematologic malignancies and stem cell transplants. Non-susceptibility rates increased after the introduction of prophylaxis, with yearly non-susceptibility rates rising from 30%–33% to 40%–88% in blood isolates. The high rates of non-susceptibility now observed raise concerns about the continued efficacy of FQ prophylaxis. This concern exists particularly in those patients undergoing stem cell transplants where the total FQ non-susceptibility rates over the study period were 82.3%. Further evaluation of the effect of FQ prophylaxis on antibiotic resistance and its efficacy in the setting of increased rates of resistance is warranted

    Overlap functions in correlation methods and quasifree nucleon knockout from 16^{16}O

    Get PDF
    The cross sections of the (e,eâ€ČNe,e'N) and (Îł,p\gamma,p) reactions on 16^{16}O are calculated, for the transitions to the 1/2−1/2^{-} ground state and the first 3/2−3/2^{-} excited state of the residual nucleus, using single-particle overlap functions obtained on the basis of one-body density matrices within different correlation methods. The electron-induced one-nucleon knockout reaction is treated within a nonrelativistic DWIA framework. The theoretical treatment of the (Îł,p\gamma,p) reaction includes both contributions of the direct knockout mechanism and of meson-exchange currents. The results are sensitive to details of the different overlap functions. The consistent analysis of the reaction cross sections and the comparison with the experimental data make it possible to study the nucleon--nucleon correlation effects.Comment: 26 pages, LaTeX, 5 Postscript figures, submitted to PR

    Donor states in modulation-doped Si/SiGe heterostructures

    Full text link
    We present a unified approach for calculating the properties of shallow donors inside or outside heterostructure quantum wells. The method allows us to obtain not only the binding energies of all localized states of any symmetry, but also the energy width of the resonant states which may appear when a localized state becomes degenerate with the continuous quantum well subbands. The approach is non-variational, and we are therefore also able to evaluate the wave functions. This is used to calculate the optical absorption spectrum, which is strongly non-isotropic due to the selection rules. The results obtained from calculations for Si/Si1−x_{1-x}Gex_x quantum wells allow us to present the general behavior of the impurity states, as the donor position is varied from the center of the well to deep inside the barrier. The influence on the donor ground state from both the central-cell effect and the strain arising from the lattice mismatch is carefully considered.Comment: 17 pages, 10 figure

    Are the magnetic fields of millisecond pulsars ~ 10^8 G?

    Full text link
    It is generally assumed that the magnetic fields of millisecond pulsars (MSPs) are ∌108\sim 10^{8}G. We argue that this may not be true and the fields may be appreciably greater. We present six evidences for this: (1) The ∌108\sim 10^{8} G field estimate is based on magnetic dipole emission losses which is shown to be questionable; (2) The MSPs in low mass X-ray binaries (LMXBs) are claimed to have <1011< 10^{11} G on the basis of a Rayleygh-Taylor instability accretion argument. We show that the accretion argument is questionable and the upper limit 101110^{11} G may be much higher; (3) Low magnetic field neutron stars have difficulty being produced in LMXBs; (4) MSPs may still be accreting indicating a much higher magnetic field; (5) The data that predict ∌108\sim 10^{8} G for MSPs also predict ages on the order of, and greater than, ten billion years, which is much greater than normal pulsars. If the predicted ages are wrong, most likely the predicted ∌108\sim 10^{8} G fields of MSPs are wrong; (6) When magnetic fields are measured directly with cyclotron lines in X-ray binaries, fields ≫108\gg 10^{8} G are indicated. Other scenarios should be investigated. One such scenario is the following. Over 85% of MSPs are confirmed members of a binary. It is possible that all MSPs are in large separation binaries having magnetic fields >108> 10^{8} G with their magnetic dipole emission being balanced by low level accretion from their companions.Comment: 16 pages, accept for publication in Astrophysics and Space Scienc

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    News from the Muon (g-2) Experiment at BNL

    Get PDF
    The magnetic moment anomaly a_mu = (g_mu - 2) / 2 of the positive muon has been measured at the Brookhaven Alternating Gradient Synchrotron with an uncertainty of 0.7 ppm. The new result, based on data taken in 2000, agrees well with previous measurements. Standard Model evaluations currently differ from the experimental result by 1.6 to 3.0 standard deviations.Comment: Talk presented at RADCOR - Loops and Legs 2002, Kloster Banz, Germany, September 8-13 2002, to be published in Nuclear Physics B (Proc. Suppl.); 5 pages, 3 figure

    An improved method for measuring muon energy using the truncated mean of dE/dx

    Full text link
    The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(E_mu) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,eâ€Čp)Îł(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,eâ€Čp)Îł(e,e'p)\gamma to H(e,eâ€Čp)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.
    • 

    corecore