1,166 research outputs found

    Hadron widths in mixed-phase matter

    Get PDF
    We derive classically an expression for a hadron width in a two-phase region of hadron gas and quark-gluon plasma (QGP). The presence of QGP gives hadrons larger widths than they would have in a pure hadron gas. We find that the ϕ\phi width observed in a central Au+Au collision at s=200\sqrt{s}=200 GeV/nucleon is a few MeV greater than the width in a pure hadron gas. The part of observed hadron widths due to QGP is approximately proportional to (dN/dy)1/3(dN/dy)^{-1/3}.Comment: 8 pages, latex, no figures, KSUCNR-002-9

    Field desorption ion source development for neutron generators

    Full text link
    A new approach to deuterium ion sources for deuterium-tritium neutron generators is being developed. The source is based upon the field desorption of deuterium from the surfaces of metal tips. Field desorption studies of microfabricated field emitter tip arrays have been conducted for the first time. Maximum fields of 30 V/nm have been applied to the array tip surfaces to date, although achieving fields of 20 V/nm to possibly 25 V/nm is more typical. Both the desorption of atomic deuterium ions and the gas phase field ionization of molecular deuterium has been observed at fields of roughly 20 V/nm and 20-30 V/nm, respectively, at room temperature. The desorption of common surface adsorbates, such as hydrogen, carbon, water, and carbon monoxide is observed at fields exceeding ~10 V/nm. In vacuo heating of the arrays to temperatures of the order of 800 C can be effective in removing many of the surface contaminants observed

    Enhancement of low-mass dileptons in heavy-ion collisions

    Get PDF
    Using a relativistic transport model for the expansion stage of S+Au collisions at 200 GeV/nucleon, we show that the recently observed enhancement of low-mass dileptons by the CERES collaboration can be explained by the decrease of vector meson masses in hot and dense hadronic matter.Comment: 12 pages, RevTeX, 3 figures available from [email protected]

    Computing domains of attraction for planar dynamics

    Get PDF
    In this note we investigate the problem of computing the domain of attraction of a ow on R2 for a given attractor. We consider an operator that takes two inputs, the description of the ow and a cover of the attractors, and outputs the domain of attraction for the given attractor. We show that: (i) if we consider only (structurally) stable systems, the operator is (strictly semi-)computable; (ii) if we allow all systems de ned by C1-functions, the operator is not (semi-)computable. We also address the problem of computing limit cycles on these systems

    J/\psi production through resolved photon processes at e+ e- colliders

    Full text link
    We consider J/psi photoproduction in e+ e- as well as linear photon colliders. We find that the process is dominated by the resolved photon channel. Both the once-resolved and twice-resolved cross-sections are sensitive to (different combinations of) the colour octet matrix elements. Hence, this may be a good testing ground for colour octet contributions in NRQCD. On the other hand, the once-resolved J/psi production cross-section, particularly in a linear photon collider, is sensitive to the gluon content of the photon. Hence these cross-sections can be used to determine the parton distribution functions, especially the gluon distribution, in a photon, if the colour octet matrix elements are known.Comment: Added a figure on parametrisation dependence of photonic parton densities and some reference

    Formation of superdense hadronic matter in high energy heavy-ion collisions

    Get PDF
    We present the detail of a newly developed relativistic transport model (ART 1.0) for high energy heavy-ion collisions. Using this model, we first study the general collision dynamics between heavy ions at the AGS energies. We then show that in central collisions there exists a large volume of sufficiently long-lived superdense hadronic matter whose local baryon and energy densities exceed the critical densities for the hadronic matter to quark-gluon plasma transition. The size and lifetime of this matter are found to depend strongly on the equation of state. We also investigate the degree and time scale of thermalization as well as the radial flow during the expansion of the superdense hadronic matter. The flow velocity profile and the temperature of the hadronic matter at freeze-out are extracted. The transverse momentum and rapidity distributions of protons, pions and kaons calculated with and without the mean field are compared with each other and also with the preliminary data from the E866/E802 collaboration to search for experimental observables that are sensitive to the equation of state. It is found that these inclusive, single particle observables depend weakly on the equation of state. The difference between results obtained with and without the nuclear mean field is only about 20\%. The baryon transverse collective flow in the reaction plane is also analyzed. It is shown that both the flow parameter and the strength of the ``bounce-off'' effect are very sensitive to the equation of state. In particular, a soft equation of state with a compressibility of 200 MeV results in an increase of the flow parameter by a factor of 2.5 compared to the cascade case without the mean field. This large effect makes it possible to distinguish the predictions from different theoretical models and to detect the signaturesComment: 55 pages, latex, + 39 figures available upon reques

    J/ψ+c+cˉJ/\psi + c + \bar{c} Photoproduction in e+ee^+ e^- Scattering

    Full text link
    We investigate the J/ψJ/\psi + c + cˉ\bar{c} photoproduction in e+ee^+ e^- collision at the LEP II energy. The physical motivations for this study are: 1) such next-to-leading order(NLO) process was not considered in previous investigations of J/ψJ/\psi photoproduction in e+ee^+ e^- interaction, and it is worthwhile to do so in order to make sound predictions for experimental comparison; 2) from recent Belle experiment results, the process with same final states at the BB factory has a theoretically yet unexplainable large fraction; hence it is interesting to see what may happen at other colliders; 3) the existing LEP data are marginal in observing such process, and at the planed Linear Colliders(LCs) this process can be measured with high accuracy; 4) it is necessary to take this process into consideration in the aim of elucidating the quarkonium production mechanism, especially in testing the universality of NRQCD nonperturbative matrix elements via J/ψJ/\psi photoproduction in electron-position collisions.Comment: 15 pages, 3 figure

    K^+ production in the reaction 58Ni+58Ni^{58}Ni+^{58}Ni at incident energies from 1 to 2 AGeV

    Full text link
    Semi-inclusive triple differential multiplicity distributions of positively charged kaons have been measured over a wide range in rapidity and transverse mass for central collisions of 58^{58}Ni with 58^{58}Ni nuclei. The transverse mass (mtm_t) spectra have been studied as a function of rapidity at a beam energy 1.93 AGeV. The mtm_t distributions of K^+ mesons are well described by a single Boltzmann-type function. The spectral slopes are similar to that of the protons indicating that rescattering plays a significant role in the propagation of the kaon. Multiplicity densities have been obtained as a function of rapidity by extrapolating the Boltzmann-type fits to the measured distributions over the remaining phase space. The total K^+ meson yield has been determined at beam energies of 1.06, 1.45, and 1.93 AGeV, and is presented in comparison to existing data. The low total yield indicates that the K^+ meson can not be explained within a hadro-chemical equilibrium scenario, therefore indicating that the yield does remain sensitive to effects related to its production processes such as the equation of state of nuclear matter and/or modifications to the K^+ dispersion relation.Comment: 24 pages Latex (elsart) 7 PS figures to be submitted to Nucl. Phys

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres
    corecore