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Abstract. In this note we investigate the problem of computing the
domain of attraction of a flow on R2 for a given attractor. We consider
an operator that takes two inputs, the description of the flow and a cover
of the attractors, and outputs the domain of attraction for the given
attractor. We show that: (i) if we consider only (structurally) stable
systems, the operator is (strictly semi-)computable; (ii) if we allow all
systems defined by C1-functions, the operator is not (semi-)computable.
We also address the problem of computing limit cycles on these systems.

Many problems about dynamical systems (DSs) are concerned with their
long term behavior. For example, given some trajectory, where will it end up?
Which are the invariant sets of a DS? Which are its attractors?

Recently, with the advent of increasingly powerful digital computers, nu-
merous new ideas and concepts related to these question have appeared (e.g.
sensitive dependence on initial conditions, chaos, strange attractors, Mandel-
brot set). However it is interesting to note that the computer, while being an
invaluable tool to get some intuition about a DS, is rarely used to prove results.
Usually the formal analysis of DSs is done analytically (but often relies on in-
formation provided by numerical simulations), using heavy mathematics with
little reliance on the computer. A notable exception is the proof that the Lorenz
strange attractor exists and is robust under small perturbations [1], [2].

One of the reasons for this phenomenon is that computers introduce trun-
cation errors which, in conjunction with other properties such as sensitive de-
pendency on initial conditions, is likely to produce simulated trajectories that
cannot be proved accurate. Of course, there are many results exhibiting that
these simulations are valuable; the foremost of such results is perhaps the Shad-
owing Lemma [3], [4]. However the accuracy of a particular simulation, especially
when we are interested in global properties, can usually be put into question.

In this paper we deal with a particular type of the problems mentioned
above: is it possible to conceive a computer program that, given an input that
describes a dynamical system (DS) as well as an attractor of this DS, computes
(rigourously) the basin of attraction of the given attractor?

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/61500762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Since there are many open questions about general classes of dynamical sys-
tem, we restrict ourselves to a well-studied case, the continuous-time DS defined
on the plane R2 by

x′ = f(x), (1)

where f : R2 → R2 and t is the independent variable.
Some techniques introduced on this paper are based on [5]. They are essen-

tially adaption and enhancements, that allow to correct some results of [5].

1 Differential equations

Here we give a summary of results concerning the ODE (1). For more details,
the reader is referred to [6], [7], [8].

Definition 1. Let φ(t, x0) denote the solution of (1) corresponding to the initial
condition x(0) = x0. The function φ(·, x0) : R2 → R2 is called a solution curve,
trajectory, or orbit of (1) through the point x0.

1. A point y is called an equilibrium point of (1) if f(y) = 0. An equilibrium
point y0 is called hyperbolic if none of the eigenvalues of the gradient matrix
Df(y0) of f at y0 has zero real part.

2. An equilibrium point x0 of (1) is called stable if for any ε > 0, there exists
a δ > 0 such that |φ(t, x̃)− x0| < ε for all t ≥ 0, provided |x̃− x0| < δ.
Furthermore, x0 is called asymptotically stable if it is stable and there exists
a (fixed) δ0 > 0 such that limt→∞ φ(t, x̃) = x0 for all x̃ satisfying |x̃− x0| <
δ0.

Given a trajectory Γx0 = φ(·, x0), we define the positive half-trajectory as
Γ+
x0

= {φ(t, x0)|t ≥ 0}. When the context is clear, we often drop the subscript
x0 and write simply Γ and Γ+.

It is not difficult to see that if x0 is an equilibrium point of (1), then φ(t, x0) =
x0 for all t ≥ 0. It is also known that if all eigenvalues of Df(x0) of an hyperbolic
equilibrium point x0 are negative, then x0 is asymptotically stable; in this case
x0 is called a sink.

While many results about the long term dynamics of (1) focus on fixed points,
especially hyperbolic ones, since this is the easiest case to tackle, fixed points
are not the sole objects to which trajectories converge as we now will see.

Definition 2. 1. A point p ∈ Rn is an ω-limit point of the trajectory φ(·, x) of
the system (1) if there is a sequence tn →∞ such that limn→∞ φ(tn, x) = p.

Definition 3. The set of all ω-limit points of the trajectory Γ is called the ω-
limit set of Γ ; written as ω(Γ ) or ω(x) if Γ = φ(·, x).

Definition 4. A cycle or periodic orbit of (1) is any closed solution curve of
(1) which is not an equilibrium point. A cycle Υ is stable if for each ε > 0 there
is a neighborhood U of Υ such that for all x ∈ U , d(Γ+

x , Υ ) < ε. A cycle Υ is
asymptotically stable (we also say that Υ is a limit cycle) if for all points x0 in
some neighborhood U of Υ one has limt→∞ d(φ(t, x0), Υ ) = 0.
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We can define hyperbolic limit cycles in terms of characteristics exponents
(see [8, Section 3.5]), in a way similar to Definition 1. However, to avoid tech-
nical issues that are not relevant to our discussion, we simply state one of their
properties (see [8, Section 3.5]): in a suitable neighborhood, the convergence rate
to the hyperbolic limit cycle is exponential (∼ e−λt, for λ > 0).

Definition 5. A set A ⊆ R2 is invariant if φ(t, x) ∈ A for all t ∈ [0,+∞)
and x ∈ A. If A is a closed invariant set, its domain of attraction (or basin of
attraction) is the set

{x ∈ R2 : ω(x) ⊆ A}.

Domains of attraction are separated by curves in R2 (stable manifolds - see
[7, p. 34]) and therefore are open sets.

The following result can be found in e.g. [8].

Proposition 1 (Poincaré-Bendixson). Suppose that f ∈ C1(E), where E ⊆
Rn is open and (1) has a trajectory Γ such that Γ+ is contained in a compact
F ⊆ E. Then if ω(Γ ) contains no singularity of (1), ω(Γ ) is a periodic orbit of
(1).

For this paper it will be of special relevance to consider structurally stable
DSs. A dynamical system defined by (1) is structurally stable if for any vector
field g close to f , the vector fields f and g are topologically equivalent (see [6],
[8] for further details). In practice this means that if we perturb the system (1)
by a small amount, the resulting DS will still be close to the one defined by
(1). According to Peixoto’s theorem (see e.g. [8]) if M ⊆ R2 is a compact, then
the set of structurally stable vector fields in C1(M) is an open, dense subset of
C1(M). It can be proved (see e.g. [8]) that the only limit sets for a structurally
stable DS defined on a compact M ⊆ R2 are hyperbolic equilibrium points and
hyperbolic limit cycles, and that these appear in a finite number.

We now need estimates on the error committed on the computation of a
trajectory when the system is perturbed. Let x be a solution of the equation (1).
Let y be a solution of the ODE

y′ = g(y).

The following result is classical and can be found in e.g. [6]

Lemma 1. In the above conditions, and supposing that x and y are defined on
a region D where f and g satisfy a Lipschitz condition, with Lipschitz constant
L, then on D

‖x(t)− y(t)‖ ≤ ‖x(0)− y(0)‖ eLt +
ε

L
(eLt − 1),

provided ‖f − g‖ ≤ ε there.
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We also set up the following notation. A trajectory φ : R+
0 → R2 is a solution

of the differential inclusion
x′ ∈ fε(x),

where fε is a set valued function defined by fε(x) = B(f(x), ε) (the ball of center
f(x) and radius ε) if φ′(t) ∈ fε(φ(t)) almost everywhere. See [9], [10] for further
details on differential inclusions.

2 Computable analysis

This section introduces concepts and results from computable analysis. Although
computable analysis can be adapted to other topological spaces, here we restrict
it to Rn, which is our case of interest. For more details the reader is referred to
[11], [12], [13]. The idea underlying computable analysis to compute over a set
A is to encode each element a of A into a countable sequence of symbols, called
ρ-name. Each sequence must encode at most an element of A. From this point of
view, we can forget the set A, and work only over sequences of symbols. Usually
each sequence should converge to an element a: the more elements we have from
a sequence encoding a, the more precisely we can pinpoint a. To compute with
the sequences, we use Type-2 machines, which are similar to Turing machines,
but (i) have a read-only tape, where the input (i.e. the sequence encoding it) is
written; (ii) have a write-only output tape, where the head cannot move back
and the sequence encoding the output is written.

At any finite amount of time we can halt the computation, and we will have
a partial result on the output tape. The more time we wait, the more accurate
this result will be. We now introduce notions of computability over Rn.

Definition 6. 1. A sequence {rn} of rational numbers is called a ρ-name of a
real number x if there are three functions a, b and c from N to N such that
for all n ∈ N, rn = (−1)a(n) b(n)

c(n)+1 and

|rn − x| ≤
1
2n
. (2)

2. A double sequence {rn,k}n,k∈N of rational numbers is called a ρ-name for
a sequence {xn}n∈N of real numbers if there are three computable functions
a, b, c from N2 to N such that, for all k, n ∈ N, rn,k = (−1)a(k,n) b(k,n)

c(k,n)+1 and

|rn,k − xn| ≤
1
2k
.

3. A real number x (a sequence {xn}n∈N of real numbers) is called computable
if it has a computable ρ-name, i.e. there is a Type-2 machine that computes
the ρ-name without any input.

The notion of the ρ-name can be extended to points in Rl as follows: a
sequence {(r1n, r2n, . . . , rln)}n∈N of rational vectors is called a ρ-name of x =
(x1, x2, . . . , xl) ∈ Rl if {rjn}n∈N is a ρ-name of xj , 1 ≤ j ≤ l. Having ρ-names,
we can define computable functions.
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Definition 7. Let A,B be sets, where ρ-names can be defined for elements of
A and B. A function f : A → B is computable if there is a Type-2 machine
such that on any ρ-name of x ∈ A, the machine computes as output a ρ-name
of f(x) ∈ B.

Next we present a notion of computability for open and closed subsets of Rl
(cf. [13], Definition 5.1.15). We implicitly use ρ-names. For instance, to obtain
names of open subsets of Rn, we note that the set of rational balls B(a, r) = {x ∈
Rl : |x− a| < r} where a, r ∈ Q is a basis for the standard topology over Rn.
Depending on the ρ-names used, we obtain different notions of computability.
We omit further details for reasons of space.

Definition 8. 1. An open set E ⊆ Rl is called recursively enumerable (r.e. for
short) open if there are computable sequences {an} and {rn}, an ∈ E and
rn ∈ Q such that

E = ∪∞n=0B(an, rn).

Without loss of generality one can also assume that for any n ∈ N, the closure
of B(an, rn), denoted as B(an, rn), is contained in E, where B(an, rn) =
{x ∈ Rl : |x− an| < rn}.

2. A closed subset K ⊆ Rl is called r.e. closed if there exist computable se-
quences {bn} and {sn}, bn ∈ Ql and sn ∈ Q, such that {B(bn, sn)}n∈N lists
all rational open balls intersecting K.

3. An open set E ⊆ Rl is called computable (or recursive) if E is r.e. open and
its complement Ec is r.e. closed. Similarly, a closed set K ⊆ Rl is called
computable (or recursive) if K is r.e. closed and its complement Kc is r.e.
open.

When dealing with open sets in Rn, we identify a special case of computabil-
ity, that we call semi-computability. Let O(Rn) = {O|O ⊆ Rn is open in the
standard topology}.

Definition 9. A function f : A → O(Rn) is called semi-computable if there is
a Type-2 machine such that on any ρ-name of x ∈ A, the machine computes as
output two sequences {an} and {rn}, an ∈ Rn and rn ∈ Q such that

f(x) = ∪∞n=0B(an, rn).

Without loss of generality one can also assume that for any n ∈ N, the closure
of B(an, rn) is contained in f(x).

We call this function semi-computable because we can tell in a finite amount
of time if a point belongs to f(x), but we have to wait an infinite amount of
time to know that it does not belong to f(x).

Before closing this section, we present some useful results from [14]. Recall
that a function f : E → Rm, E ⊆ Rl, is said to be locally Lipschitz on E if
it satisfies a Lipschitz condition on every compact set V ⊂ E. The following
definition gives a computable analysis analog of this condition.
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Definition 10. Let E = ∪∞n=0B(an, rn) ⊆ Rl, where B(an, rn) ⊆ E, be a r.e.
open set. A function f : E → Rm is called effectively locally Lipschitz on E if
there exists a computable sequence {Kn} of positive integers such that

|f(x)− f(y)| ≤ Kn |x− y| whenever x, y ∈ B(an, rn).

The following result is from [14].

Theorem 1. Assume that f : E → Rm is a computable function in C1(E)
(meaning that both f and its derivative f ′ are computable). Then f is effectively
locally Lipschitz on E.

3 Results

In this section we show that domains of attraction of (1) for hyperbolic attractors
can be computed from the former for C1-computable functions f (meaning that
both f and Df are computable). We also extend a result of Zhong [15] for the
case of R2, showing that not only hyperbolic sinks have r.e. domains of attraction,
but also hyperbolic limit cycles. Our results rely on the procedure introduced
below.

3.1 Main construction

The idea underlying the main construction is as follows. We pick an n ∈ N,
construct a n × n square, and divide it into n4 smaller squares of size 1

n ×
1
n .

Next we replicate the dynamics of (1) over these small squares, obtaining a finite
automata on which we can decide things in finite time. Then we increment n
and the accuracy of the simulation, repeating this procedure indefinitely. In the
limit we get the exact dynamics of (1), but in between we obtain correct partial
results that allow us to compute domains of attraction for (1).

The procedure is an adaptation (we restrict ourselves to differential equa-
tions and not inclusions) and extension (this construction works for unbounded
domains) of a technique introduced in [5].

The construction. We consider only structurally stable systems. There-
fore limit sets are limit cycles or equilibrium points. We will see later why this
construction cannot be carried over to unstable systems.

Suppose that our attractor is a computable fixed point x0. We want to com-
pute its domain of attraction. First pick an n = n0 ∈ N such that x0 ∈ Sn =
(−n, n)2. In general, we ought to iterate the algorithm by incrementing n, thus
capturing more and more of the dynamics of (1) in each step. But for simplicity,
we fix some n for now. Suppose, without loss of generality, that the distance of
x0 to Sn (= complement of Sn) is bigger than 1

n . Let Ln ∈ N be a Lipschitz
constant valid over Sn (Ln can be computed by Theorem 1). Now divide the
big square Sn into smaller squares of size 1

2Lnn
× 1

2Lnn
(later we will see why

we use the 2Ln factor). For simplicity, we call these squares 1
n ×

1
n squares. Let
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s be a 1
n ×

1
n square. Since f is computable, one can compute in finite time a

rational polytope Ps,n (the polytope of directions) such that f(s) ⊂ Ps,n (Ps,n
is an over-approximation) and dist(f(s), Ps,n) < 1

n , where dist(f(s), Ps,n) is the
Hausdorff distance between f(s) and Ps,n. Now we define a function Θ by the
formula that, for each 1

n×
1
n square s, Θ(s) =

⋃
As, where As is the collection of

all 1
n ×

1
n squares which are adjacent to one the faces of s (including the square

s) and intersect with the following rational polytope

Rs,n = {α+ tPs,n|t ∈ R+
0 , α is a face of s}. (3)

(cf. Fig. 1)

Fig. 1. Flow from a 1
n
× 1

n
-square

There is a special case to be dealt with (this differs from the paper [5], where
it doesn’t deal with the case when the flow leaves the square Sn): when α is part
of the boundary of Sn (i.e. s is not completely surrounded by 1

n ×
1
n squares). In

this case, we check if the set (3) leaves the face α to go directly to the set Sn. If
this is the case, proceed as before (don’t add 1

n ×
1
n squares outside of Sn to the

definition of Θ(s)) but mark s with some symbol, say ♣ (formally this equals
to define a function over 1

n ×
1
n squares). This ♣ indicates that the trajectory is

incomplete from this point, since it leaves Sn.
Given a 1

n ×
1
n square s ⊆ Sn, its n-polygonal trajectory is Trajn(s) =

∪∞i=0Θ
i(s) which can be computed in finite time by the following sketch of algo-

rithm (remark that the number of 1
n ×

1
n squares is finite):

R0 = s
Ri+1 = Θ(Ri)

We will have Trajn(s) = Rj for some j ∈ N. In any step, if Θ(Ri) is marked
with ♣, then mark s also with ♣ to indicate that Trajn(s) is incomplete (it goes
out of the n× n square Sn). The following lemma follows immediately from the
previous construction.

Lemma 2. Assume the conditions as above, let y ∈ s ⊆ Sn. If φ(t, y) ∈ Sn for
all t ∈ [0, T ), where 0 ≤ T ≤ +∞, then
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1. {φ(t, y)|t ∈ [0, T )} ⊆ Trajn(s).
2. For each ε > 0 there exists n0 ≥ n such that Trajn0(s) ⊆ {φ(t, s)|φ′(t) ∈
fε(φ(t))}.

Proof. The claim 1 is clear from the previous construction.
For the claim 2, consider a 1

n ×
1
n square s. Since s is a square of size 1

2Lnn
×

1
2Lnn

, two points A,B ∈ s are at most within distance
√

2
2Lnn

≤ 1
Lnn

. Since Ln is a
Lipschitz constant, |f(A)− f(B)| ≤ 1

n . This implies that the over-approximation
rational polytope Ps,n of f(s) has diameter ≤ 2

n . Therefore it suffices to use an
n0 such that 2

n0
≤ ε to prove the second claim.

Some simple facts can be obtained from this construction:

Lemma 3. Assume the conditions as above:

1. Let γ ⊆ Sn be a limit cycle. If s intersects γ and γ 6⊆ s then there is some
i > 0 such that s ⊆ Θ(Ri − s).

2. If Traj(s) is not marked with ♣, then:
(a) If Traj(s) doesn’t include a square containing the sink p, then s is not

contained in the basin of attraction of p.
(b) If Traj(s) doesn’t include a square intersecting a limit cycle γ, then s is

not contained in the basin of attraction of γ.
(c) If Traj(s) include just one square with an equilibrium point p, which is

also a sink, and does not include any limit cycle, then s is in the basin
of attraction of p.

(d) If Traj(s) doesn’t include any square containing an equilibrium point p,
and includes squares that intersect only one limit cycle γ, then s is in
the basin of attraction of γ.

3. If E ⊆ Sn is a union of 1
n ×

1
n squares such that Traj(E) is not marked with

♣ and Traj(E) = E then E contains an invariant set.

Proof. For the claim 1, remark that the flow will leave s, but it will reenter s
again. For the claim 2, it suffices to notice that (i) Traj(s) is an overapprox-
imation of the real flow starting on s (this fact can also be used to prove the
claim 3); (ii) since the flow doesn’t go to infinity (it is the case because Traj(s)
is not marked with ♣), it must converge to a sink (s has non-empty interior, and
therefore cannot be contained on the stable manifold of a saddle point) or to a
limit cycle.

3.2 Results

This section introduces the main results. In general, it is not yet known whether
the number of attractors in a given compact set can be decided effectively;
this is due to the possibility of having unknown number of nested limit cycles
with unknown sizes (an interesting problem would be to prove or disprove if
this problem is undecidable). However, in practical applications, it is usually
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more important to know that a certain compact C indeed contains one or more
attractors, and to determine the union of all domains of attraction for attractors
in C. This is of interest, for example, to control theory. For instance, imagine
that we are dealing with a nuclear reactor and want to decide which are the
initial conditions that lead to a critical domain of operation (i.e. these are points
to be avoided). We pick a compact set that covers all these critical situations and
then determine the domain of attraction as described above within this compact
set.

Usually it is assumed that C is invariant, but this assumption is not necessary.
The set C may have some parts to which the flow circulates before reaching
attractors outside of C. This does not pose a problem and henceforth we do
not assume that C is invariant. Nevertheless, the procedure of the previous
subsection could be used to semi-decide if a set is invariant, as long as the flow
enters the invariant set in a direction that is not tangent to the frontier of the
set. We do not delve further in this subject since it is secondary to our objectives.

Formally, let S(R2) be the set of C1 structurally stable vector fields on R2,
f ∈ S(R2), and Af the class of compact sets A ⊆ R2 containing at least one
hyperbolic attractor (in this case, hyperbolic sink or limit cycle) of (1) such that
no limit set of (1) intersects simultaneously A and its complement. Note that
S(R2) ⊆ C1(R2) and that functions in C1(R2) admit names, e.g. by means of
rational polygonal functions over increasing rational cubes over R2 — see [13]
for details.

The following result shows that the operator that gives the basin of attraction
for attractors in A, given dynamics of (1), is semi-computable.

Theorem 2. Assume the conditions as above. The function F : {(A, f)|f ∈
S(R2), A ∈ Af} → O(R2) defined by F (A, f) = union of the domains of attrac-
tion for attractors in A for (1) is semi-computable, but not computable.

Proof. (Sketch) The fact that F is not computable follows from a result of Zhong
[15], that shows that there is a C1 function f such that (1) has a sink at the
origin, which domain of attraction is not computable (if F is computable then
this domain of attraction would be computable).

For the semi-computability part, let x be an interior point of the domain of
attraction of A. Suppose that the trajectory does not converge to the boundary
of the domain of attraction (i.e. part of the boundary is not itself an attractor
— we will see that this condition is of uttermost importance for the theorem to
hold). Then the n-polygonal trajectory of a square s containing x will converge
to a sink or limit cycle contained in the interior of A for n large enough (use
Lemma 1, the fact that attractors inside A are stable, and the hypothesis that
Γ+
x does not converge to the boundary of the domain of attraction). As long

as this does not happen (the flow converges to an equilibrium point outside A,
flows outside the current box Sn, or converges towards a limit cycle — see below
a sketch of how to obtain equilibrium points and limit cycles), do not list this
square as being inside the basin of attraction of A. When it happens, list s.
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The previous result no longer is true if we allow all C1 functions f , instead
of only of those who give structurally stable systems.

Theorem 3. Assume the conditions as above, the function F : {(Af , f)|f ∈
C1(R2)} → O(R2) defined by F (A, f) = domain of attraction of A for (1) is not
semi-computable.

Proof. Consider the following system, defined by polar coordinates{
r′ = −r

[
(r2 − 1)2 − µ

]
θ′ = 1

adapted from [8, p. 319, Example 2], which can easily be written in (x, y)-
coordinates. When µ < 0, the system has just one attractor, the fixed point
0 (see Fig. 2). When µ = 0, the point 0 still is a sink, but a cycle, with center

Fig. 2. Phase portrait for µ < 0 (left) and µ = 0 (right)

at 0 and radius 1 appears (see Fig. 2). Therefore the domain of attraction of the
sink at 0 is R2 for µ < 0, and {(x, y) ∈ R2|x2 +y2 < 1−√µ} for µ ≥ 0. Therefore
the map F is not continuous over its domain, and since computable functions
are continuous [13], F cannot be computable (semi-computability is in essence
computability with respect to ρ-names for open sets formed by a subbasis of the
topology — so semi-computable functions are still continuous).

It is not hard to see that our previous construction does not work when
µ = 0 in the example of Fig. 2. Each time a square outside the cycle approaches
the latter, it will eventually overlap the cycle and our square will overlap the
domain of attraction of 0 and will falsely be drawn to this equilibrium. Therefore
we cannot compute the domain of attraction of the cycle.

As a corollary of Theorem 2, we obtain a result already stated in [15], but
with a different proof and for structurally stable systems.

Corollary 1. Assume the system (1) is structurally stable and that x0 is an
hyperbolic sink. If f is computable, then the domain of attraction of x0 is an r.e.
open set of R2.
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We remark that the equilibrium points of (1) can be computed by computing
the zeros of f (this is computable — see [13]). Those zeros whose eigenvalues
of Df have all negative real part are the hyperbolic sinks. Moreover, given a
compact set M ⊆ R2 not containing equilibrium points, we can decide whether
or not it contains at least one limit cycle γ. To see this it suffices to apply the
claim 1 of Lemma 3, for all squares s ⊆ M . At the beginning we may obtain
the existence of possible cycles — these candidates are cycles of adjacent 1

n ×
1
n

squares (it might be the case that the cycle has just one 1
n ×

1
n square — the

case where the cycle is inside this square). If no limit cycle exists in M , after
some time, with increasing n, we will be able to rule out the behavior described
by the claim 1 of Lemma 3, and thus conclude that no cycle exists. If we see
a pseudo-cycle inside a 1

n ×
1
n squares, for n big enough the flow will enter the

square in a narrow direction and will not reenter the square, the same happening
with the polygonal flow, and we will then conclude at a certain point that no
“small” cycle exists if none is present on this 1

n ×
1
n square. On the other hand,

if a cycle exists, we keep having cycles of 1
n ×

1
n squares. But since the flow

converges exponentially to the limit cycle, when the perturbation error on the
flow is made small enough, the flow from s will not grow, and will hit s again in
a “thinning cycle”. The argument is very sketchy; indeed, due to the page limit
the details have to be omitted.

The point is that we can compute hyperbolic limit cycles, the catch being
that if the resolution is not enough at a given point, our approximation can
consist in reality of 2 or more cycles very near to each other and that we where
unable to distinguish. But if we use enough resolution, we will be able to separate
limit cycles.
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