A new approach to deuterium ion sources for deuterium-tritium neutron
generators is being developed. The source is based upon the field desorption of
deuterium from the surfaces of metal tips. Field desorption studies of
microfabricated field emitter tip arrays have been conducted for the first
time. Maximum fields of 30 V/nm have been applied to the array tip surfaces to
date, although achieving fields of 20 V/nm to possibly 25 V/nm is more typical.
Both the desorption of atomic deuterium ions and the gas phase field ionization
of molecular deuterium has been observed at fields of roughly 20 V/nm and 20-30
V/nm, respectively, at room temperature. The desorption of common surface
adsorbates, such as hydrogen, carbon, water, and carbon monoxide is observed at
fields exceeding ~10 V/nm. In vacuo heating of the arrays to temperatures of
the order of 800 C can be effective in removing many of the surface
contaminants observed