1,395 research outputs found

    Critical properties of loop percolation models with optimization constraints

    Full text link
    We study loop percolation models in two and in three space dimensions, in which configurations of occupied bonds are forced to form closed loop. We show that the uncorrelated occupation of elementary plaquettes of the square and the simple cubic lattice by elementary loops leads to a percolation transition that is in the same universality class as the conventional bond percolation. In contrast to this an optimization constraint for the loop configurations, which then have to minimize a particular generic energy function, leads to a percolation transition that constitutes a new universality class, for which we report the critical exponents. Implication for the physics of solid-on-solid and vortex glass models are discussed.Comment: 8 pages, 8 figure

    Comparing Criteria for Circular Orbits in General Relativity

    Get PDF
    We study a simple analytic solution to Einstein's field equations describing a thin spherical shell consisting of collisionless particles in circular orbit. We then apply two independent criteria for the identification of circular orbits, which have recently been used in the numerical construction of binary black hole solutions, and find that both yield equivalent results. Our calculation illustrates these two criteria in a particularly transparent framework and provides further evidence that the deviations found in those numerical binary black hole solutions are not caused by the different criteria for circular orbits.Comment: 4 pages; to appear in PRD as a Brief Report; added and corrected reference

    Comparing initial-data sets for binary black holes

    Get PDF
    We compare the results of constructing binary black hole initial data with three different decompositions of the constraint equations of general relativity. For each decomposition we compute the initial data using a superposition of two Kerr-Schild black holes to fix the freely specifiable data. We find that these initial-data sets differ significantly, with the ADM energy varying by as much as 5% of the total mass. We find that all initial-data sets currently used for evolutions might contain unphysical gravitational radiation of the order of several percent of the total mass. This is comparable to the amount of gravitational-wave energy observed during the evolved collision. More astrophysically realistic initial data will require more careful choices of the freely specifiable data and boundary conditions for both the metric and extrinsic curvature. However, we find that the choice of extrinsic curvature affects the resulting data sets more strongly than the choice of conformal metric.Comment: 18 pages, 12 figures, accepted for publication in Phys. Rev.

    Molecular phylogenetic analysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia: Unionida) and the paraphyly of Australasian taxa

    Get PDF
    The freshwater mussel family Hyriidae (Mollusca: Bivalvia: Unionida) has a disjunct trans-Pacific distribution in Australasia and South America. Previous phylogenetic analyses have estimated the evolutionary relationships of the family and the major infra-familial taxa (Velesunioninae and Hyriinae: Hyridellini in Australia; Hyriinae: Hyriini, Castaliini, and Rhipidodontini in South America), but taxon and character sampling have been too incomplete to support a predictive classification or allow testing of biogeographical hypotheses. We sampled 30 freshwater mussel individuals representing the aforementioned hyriid taxa, as well as outgroup species representing the five other freshwater mussel families and their marine sister group (order Trigoniida). Our ingroup included representatives of all Australian genera. Phylogenetic relationships were estimated from three gene fragments (nuclear 28S, COI and 16S mtDNA) using maximum parsimony, maximum likelihood, and Bayesian inference, and we applied a Bayesian relaxed clock model calibrated with fossil dates to estimate node ages. Our analyses found good support for monophyly of the Hyriidae and the subfamilies and tribes, as well as the paraphyly of the Australasian taxa (Velesunioninae, (Hyridellini, (Rhipidodontini, (Castaliini, Hyriini)))). The Hyriidae was recovered as sister to a clade comprised of all other Recent freshwater mussel families. Our molecular date estimation supported Cretaceous origins of the major hyriid clades, pre-dating the Tertiary isolation of South America from Antarctica/Australia. We hypothesize that early diversification of the Hyriidae was driven by terrestrial barriers on Gondwana rather than marine barriers following disintegration of the super-continent

    A skeleton approximate solution of the Einstein field equations for multiple black-hole systems

    Full text link
    An approximate analytical and non-linear solution of the Einstein field equations is derived for a system of multiple non-rotating black holes. The associated space-time has the same asymptotic structure as the Brill-Lindquist initial data solution for multiple black holes. The system admits an Arnowitt-Deser-Misner (ADM) Hamiltonian that can particularly evolve the Brill-Lindquist solution over finite time intervals. The gravitational field of this model may properly be referred to as a skeleton approximate solution of the Einstein field equations. The approximation is based on a conformally flat truncation, which excludes gravitational radiation, as well as a removal of some additional gravitational field energy. After these two simplifications, only source terms proportional to Dirac delta distributions remain in the constraint equations. The skeleton Hamiltonian is exact in the test-body limit, it leads to the Einsteinian dynamics up to the first post-Newtonian approximation, and in the time-symmetric limit it gives the energy of the Brill-Lindquist solution exactly. The skeleton model for binary systems may be regarded as a kind of analytical counterpart to the numerical treatment of orbiting Misner-Lindquist binary black holes proposed by Gourgoulhon, Grandclement, and Bonazzola, even if they actually treat the corotating case. Along circular orbits, the two-black-hole skeleton solution is quasi-stationary and it fulfills the important property of equality of Komar and ADM masses. Explicit calculations for the determination of the last stable circular orbit of the binary system are performed up to the tenth post-Newtonian order within the skeleton model.Comment: 15 pages, 1 figure, submitted to Phys. Rev. D, 3 references added, minor correction

    Corotating and irrotational binary black holes in quasi-circular orbits

    Get PDF
    A complete formalism for constructing initial data representing black-hole binaries in quasi-equilibrium is developed. Radiation reaction prohibits, in general, true equilibrium binary configurations. However, when the timescale for orbital decay is much longer than the orbital period, a binary can be considered to be in quasi-equilibrium. If each black hole is assumed to be in quasi-equilibrium, then a complete set of boundary conditions for all initial data variables can be developed. These boundary conditions are applied on the apparent horizon of each black hole, and in fact force a specified surface to be an apparent horizon. A global assumption of quasi-equilibrium is also used to fix some of the freely specifiable pieces of the initial data and to uniquely fix the asymptotic boundary conditions. This formalism should allow for the construction of completely general quasi-equilibrium black hole binary initial data.Comment: 13 pages, no figures, revtex4; Content changed slightly to reflect fact that regularized shift solutions do satisfy the isometry boundary condition

    Assessing the impact of tailored biosecurity advice on farmer behaviour and pathogen presence in beef herds in England and Wales

    Get PDF
    The term ‘biosecurity’ encompasses many measures farmers can take to reduce the risk of pathogen incursion or spread. As the best strategy will vary between settings, veterinarians play an important role in assessing risk and providing advice, but effectiveness requires farmer acceptance and implementation. The aim of this study was to assess the effectiveness of specifically-tailored biosecurity advice packages in reducing endemic pathogen presence on UK beef suckler farms. One hundred and sixteen farms recruited by 10 veterinary practices were followed for three years. Farms were randomly allocated to intervention (receiving specifically-tailored advice, with veterinarians and farmers collaborating to develop an improved biosecurity strategy) or control (receiving general advice) groups. A spreadsheet-based tool was used annually to attribute a score to each farm reflecting risk of entry or spread of bovine viral diarrhoea virus (BVDV), bovine herpesvirus-1 (BHV1), Mycobacterium avium subsp. paratuberculosis (MAP), Leptospira interrogans serovar hardjo (L. hardjo) and Mycobacterium bovis (M. bovis). Objectives of these analyses were to identify evidence of reduction in risk behaviours during the study, as well as evidence of reductions in pathogen presence, as indications of effectiveness. Risk behaviours and pathogen prevalences were examined across study years, and on intervention compared with control farms, using descriptive statistics and multilevel regression. There were significant reductions in risk scores for all five pathogens, regardless of intervention status, in every study year compared with the outset. Animals on intervention farms were significantly less likely than those on control farms to be seropositive for BVDV in years 2 and 3 and for L. hardjo in year 3 of the study. Variations by study year in animal-level odds of seropositivity to BHV1 or MAP were not associated with farm intervention status. All farms had significantly reduced odds of BHV1 seropositivity in year 2 than at the outset. Variations in farm-level MAP seropositivity were not associated with intervention status. There were increased odds of M. bovis on intervention farms compared with control farms at the end of the study. Results suggest a structured annual risk assessment process, conducted as a collaboration between veterinarian and farmer, is valuable in encouraging improved biosecurity practices. There were some indications, but not conclusive evidence, that tailored biosecurity advice packages have potential to reduce pathogen presence. These findings will inform development of a collaborative approach to biosecurity between veterinarians and farmers, including adoption of cost-effective strategies effective across pathogens

    Improved numerical stability of stationary black hole evolution calculations

    Get PDF
    We experiment with modifications of the BSSN form of the Einstein field equations (a reformulation of the ADM equations) and demonstrate how these modifications affect the stability of numerical black hole evolution calculations. We use excision to evolve both non-rotating and rotating Kerr-Schild black holes in octant and equatorial symmetry, and without any symmetry assumptions, and obtain accurate and stable simulations for specific angular momenta J/M of up to about 0.9M.Comment: 13 pages, 11 figures, 1 typo in Eq. (20) correcte

    Two-dimensional hole precession in an all-semiconductor spin field effect transistor

    Get PDF
    We present a theoretical study of a spin field-effect transistor realized in a quantum well formed in a p--doped ferromagnetic-semiconductor- nonmagnetic-semiconductor-ferromagnetic-semiconductor hybrid structure. Based on an envelope-function approach for the hole bands in the various regions of the transistor, we derive the complete theory of coherent transport through the device, which includes both heavy- and light-hole subbands, proper modeling of the mode matching at interfaces, integration over injection angles, Rashba spin precession, interference effects due to multiple reflections, and gate-voltage dependences. Numerical results for the device current as a function of externally tunable parameters are in excellent agreement with approximate analytical formulae.Comment: 9 pages, 11 figure

    Load assessment and analysis of impacts in multibody systems

    Get PDF
    The evaluation of contact forces during an impact requires the use of continuous force-based methods. An accurate prediction of the impact force demands the identification of the contact parameters on a case-by-case basis. In this paper, the preimpact effective kinetic energy (Formula presented.) is put forward as an indicator of the intensity of the impact force along the contact normal direction. This represents a part of the total kinetic energy of the system that is associated with the subspace of constrained motion defined by the impact constraints at the moment of contact onset. Its value depends only on the mechanical parameters and the configuration of the system. We illustrate in this paper that this indicator can be used to characterize the impact force intensity. The suitability of this indicator is confirmed by numerical simulations and experimentsPostprint (author's final draft
    corecore