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Abstract The evaluation of contact forces during an impact requires the use of
continuous force based methods. An accurate prediction of the impact force de-
mands the identification of the contact parameters on a case-by-case basis. In this
paper, the pre-impact effective kinetic energy, T−

c , is put forward as an indicator
of the intensity of the impact force along the contact normal direction. This rep-
resents a part of the total kinetic energy of the system that is associated with the
subspace of constrained motion defined by the impact constraints at the moment
of contact onset. Its value depends only on the mechanical parameters and the
configuration of the system. We illustrate in this paper that this indicator can be
used to characterize the impact force intensity. The suitability of this indicator is
confirmed with numerical simulations and experiments.

Keywords Multibody impact · Effective kinetic energy · Impact intensity

1 Introduction

Impact dynamics is generally addressed in multibody systems using one of two
approaches: 1) impulse-momentum level formulations and 2) penalty formulations
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2 Francisco González et al.

or continuous force based methods [15], [4]. The main assumption for impulse-
momentum level approaches is that the duration of impact is negligible on the
time scale determined by the finite motion of the system. This makes it possible
to integrate the dynamic equations and consider them at the impulse-momentum
level (e.g. [16], [1], [18]). This, however, eliminates the contact forces from the
formulation and includes only their impulse, which can be appropriate for various
applications (e.g. for motion simulation). However, for many engineering applica-
tions, such as engineering design problems, often more explicit knowledge about
the contact loads and their intensity is needed.

A natural choice for a performance indicator to assess these loads is the contact
force developed and its maximum value during the impact period. This requires
the use of continuous force models. A significant number of such force models is
available (e.g. [10], [12], [7], [19]). These are often based on the assumption of
Hertzian contact together with various representations for dissipation. However,
continuous force models can result in high uncertainty for the contact forces, and
can make reliable force estimation difficult for several reasons. For example, all of
these methods are highly dependent on the parametrization of the contact inter-
faces, e.g. stiffness, damping, and contact geometry. The related parameters can
be difficult to identify, and even if identified properly they are usually represen-
tative for one single setup only. As these parameters are usually associated with
simplified contact models, their values also depend on the global system properties
so any change in those requires re-calibration.

Engineering design and decision making generally rely on the use of indica-
tors to characterize the required system function and performance. We generally
term such quantities performance indicators. Here, we propose an alternative per-
formance indicator to assess the intensity of loads developed during impact and
contact transition in general. This indicator does not require the use of a con-
tact model and its corresponding parametrization, but it is a parametric function
of the system dimensions and inertias, and can reflect their overall effect on the
maximum impact loads. Our main concept for the performance indicator is that
at the onset of the contact the geometry of the system determines the main rel-
ative motions to be constrained via the impact (e.g. normal directions). In turn,
this makes it possible to decompose the dynamics of the system to constrained
and admissible motions [11]. This decomposition can be used together with both
impulse-momentum and continuous force model based approaches. Our proposal
is that the kinetic energy associated with the constrained motion at the beginning
of the contact can be used as performance indicator to characterize impact loads
as an alternative to contact forces. This will also be termed effective pre-impact
kinetic energy.

The expectation from mathematical and mechanical modelling is essentially to
provide performance indicators; both the concepts and the algorithms to deter-
mine them. For a performance indicator often the importance is not on its actual
numerical value, but rather on the way how its behaviour reflects changes in sys-
tem parameters or designs. For example, we will demonstrate that the value of
our proposed performance indicator changes in the same way as the peak contact
force developed during impact does. If we evaluate two different designs against
each other for the same contact task and the effective pre-impact kinetic energy
is greater for one of the designs then the peak impact force will also be greater
for that case. This can help the designer to make a decision and also to see how
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Fig. 1 Two circular objects about to undergo a single-point impact

the different possible design solutions influence the impact. This performance in-
dicator is applicable to a large class of problems of direct engineering relevance,
ranging from biomechanics to aerospace applications [6], [5], [8].

We will primarily consider scenarios where the impact can be represented with
one single representative relative motion. This includes so-called single-point im-
pacts, but also cases in which a resultant direction is determined for an impact
system. We note that a single-point impact model does not mean an idealized situa-
tion. It simply means that the impact between two bodies can be well-represented
with a resultant relative motion of one degree of freedom, which is being con-
strained by the contact, i.e., the motion that will be primarily affected by the
impact, and the interaction is described by the reaction force developed. The in-
terpretation of the representative relative motion of impact can be done in terms
of a selected set of generalized velocities, which leads to a Jacobian matrix, the
Jacobian of the impact. The treatment of multi-point impacts has been discussed
in the literature and several ways to deal with the problem have been proposed,
e.g. [13], [17], [2], [3]. However, single-point impact scenarios are especially suitable
to highlight the validity of the effective pre-impact kinetic energy as indicator of
the maximum force during a collision. Moreover, such a representation is valid in a
wide range of real-life applications that involve impacts between multi-rigid-body
systems.

2 Effective pre-impact kinetic energy

2.1 Illustration of the concept

Let us consider a simple example first to illustrate the idea. This example is shown
on Fig 1. Two circular-shaped objects are to collide with each other. We consider
that the system is modelled along one single direction, which results in a two
degree-of-freedom (DoF) model, described by the absolute coordinates x1 and x2
of the centres of mass of the two objects. At the time when the impact begins
the locations of the contact points in each body can be described as x1 +R1 and
x2−R2. The relative motion to be constrained by the impact can be characterized
as ẋ2 − ẋ1 = ḋc. In terms of the original set of absolute velocities q̇ = [ẋ1 ẋ2]T

this leads to

Aq̇ = ḋc (1)

where A = [−1 1] is the Jacobian of the impact.
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The dynamic equations for this system can be expressed as

Mq̈ = ATλ (2)

where

M =

[
m1 0
0 m2

]
; q̈ =

[
ẍ1
ẍ2

]
; ATλ =

[
−fc
fc

]
(3)

where λ = fc = fc(dc, ḋc) represents the contact force developed due to the impact;
it is zero before the bodies make contact. The kinetic energy of the system can be
expressed as T = (m1ẋ

2
1 +m2ẋ

2
2)/2.

The dynamics can be reformulated considering the impact representation and
the method described in [11] to decouple the system dynamics; this leads to the
introduction of new generalized velocities, ḋc = ẋ2 − ẋ1 and ḋa = m1

m2
ẋ1 + ẋ2.

These can be integrated, and the appropriate generalized coordinates, dc, da, can
also be introduced. Applying this coordinate transformation to (2) a new dynamic
formulation can be obtained as

m1m2

m1 +m2
0

0
m2

2

m1 +m2

[ d̈c
d̈a

]
=

[
fc
0

]
(4)

where (m1m2) / (m1 +m2) is the effective mass [9] associated with the impact.
The details of this transformation can be found in Appendix A. This leads to two
decoupled equations. The first one,

m1m2

m1 +m2
d̈c = fc (5)

completely characterizes the impact, and the second equation defines ḋa = const.
as a first integral of motion, which is not affected by the impact. This decomposi-
tion also splits the kinetic energy into two parts:

T =
1

2

m1m2

m1 +m2
ḋ2c +

1

2

m2
2

m1 +m2
ḋ2a = Tc + Ta (6)

where

Tc =
1

2

m1m2

m1 +m2
ḋ2c (7)

is the effective kinetic energy, associated with the impact, and

Ta =
1

2

m2
2

m1 +m2
ḋ2a (8)

is the kinetic energy part admissible with the impact which is not affected by the
impact and remains constant.

From the structure of Eq. (5) we can see that the intensity of impact is very
much governed by the effective kinetic energy at the contact onset, T−

c , i.e. at
instant t0. The effective kinetic energy can also be used to characterize the differ-
ent phases of the impact. If we consider the simplest case that the contact force
behaviour is represented with a linear or nonlinear elastic constitutive relation, a
spring, then it becomes apparent that in the compression phase all of the effective
impact kinetic energy is converted into potential energy, V , the strain energy of
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Fig. 2 Two generic impacting multibody chains

the spring. The end of the compression phase is the instant when the entire ef-
fective pre-impact kinetic energy T−

c has been transferred into potential energy.1

This condition to determine the end of the compression phase can also be used
when the contact interaction representation involves dissipative terms. In such a
case part of T−

c is dissipated during the compression phase and cannot be recov-
ered. However, still the Tc = 0 condition can mark the end of compression. In the
so-called restitution phase potential energy is again converted back into kinetic
energy. If only a linear or nonlinear spring is used to represent the contact then
the entire stored potential energy will be converted back to kinetic energy and the
end of the restitution phase can be defined when that process is finished.

Considering these, for the case of most practically relevant conservative con-
stitutive relations it is straightforward to show that the peak contact force is
monotonically related to the maximum deformation, which, in turn, is also mono-
tonically related to the effective pre-impact kinetic energy, T−

c . For the case when
dissipative effects are also present it is more difficult to show this relationship ana-
lytically. However, even for that general case we can consider that the work of the
contact force done during the compression phase equals T−

c . We can also consider
that this T−

c can vary but the structural properties of the system do not change.
An increase in the value of T−

c will lead to higher contact forces, as confirmed by
simulation and experimental results reported in Sections 3, 4, and 5. We will also
illustrate this later by considering different contact force models.

2.2 Generalization to multibody systems

The formulation developed above can be generalized for mechanical systems, Fig. 2,
represented by n generalized velocities collected in an n × 1 array v. The formu-

1 The use of this condition to determine the end of the compression phase is actually more
appropriate than some of the other usual assumptions. For example, often the end of the
compression phase is defined when the relative velocity of the contact points becomes zero.
But, that velocity becomes zero at the very beginning of impact, at the contact onset. After
that it can be questioned the relative velocity of what point we mean.
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6 Francisco González et al.

lation for the representative relative motion can be written as

Av = uc (9)

where A is the 1 × n Jacobian of the impact and uc describes the representative
relative motion that is primarily constrained during the compression phase. The
dynamic equations can be expressed as

Mv̇ + c = f + ATλ (10)

where M is the n × n mass matrix, c represents the n × 1 array of Coriolis and
centrifugal effects, λ again represents the contact force developed due to the im-
pact, and n × 1 array f stands for other generalized forces that may act on the
system. A decoupling transformation can also be introduced here as

u =

[
uc
ua

]
=

[
A
B

]
v (11)

where ua is an (n − 1) × 1 array of new generalized velocities that describe the
motion of the system admissible to the representative relative motion of impact,
B is the corresponding (n − 1) × n Jacobian that defines ua and has to satisfy
the condition AM−1BT = 0 to achieve decoupling [11]. This is the condition that
was also used to select ua for the formulation of the problem in Section 2.1 to
arrive at Eq. (4). With this selection the general formulation of Eq. (10) can be
transformed into[ (

AM−1AT
)−1

0

0 (BM−1BT)−1

] [
u̇c
u̇a

]
+

[
zc
za

]
=

[
τc
τa

]
+

[
λ
0

]
(12)

where

zc =
(
AM−1AT

)−1
AM−1c−

(
AM−1AT

)−1
Ȧv (13)

za =
(
BM−1BT

)−1
BM−1c−

(
BM−1BT

)−1
Ḃv (14)

are the new Coriolis and centrifugal terms, and

τc =
(
AM−1AT

)−1
AM−1f , and τa =

(
BM−1BT

)−1
BM−1f (15)

are the new other generalized force terms. The dynamics representation of Eq. (12)
is again decoupled in terms of the contact force developed during the impact. The
kinetic energy function is also decoupled to two parts as

T = Tc + Ta =
1

2

(
AM−1AT

)−1
u2c +

1

2
uT
a

(
BM−1BT

)−1
ua (16)

where the first part Tc is associated with the first equation in (12), meff u̇c + zc =
τc + λ, and meff = (AM−1AT)−1 is the effective inertia associated with the
impact. The contact reaction force, λ, starts to develop at the onset of contact at
the beginning of the compression phase. The duration of the compression phase is
usually short compared to the basic time scale set by the fundamental frequencies
of the system, hence the configuration of the system does not change much during
this phase. The dynamics in the compression phase will be dominated by the
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Load Assessment and Analysis of Impacts in Multibody Systems 7

contact force and the power of this force is what will mostly consume the initial
effective kinetic energy, T−

c . Therefore, we can arrive at the same conclusion as in
the case of the simple example above: the intensity of the contact and the maximum
contact load are directly related to the effective pre-impact kinetic energy.

Based on these, our claim is that the effective pre-impact kinetic energy, T−
c

can be used for the determination of how the maximum load changes. This is a
parametric function and does not depend on the contact properties of the materials
and the contact model. This fact can be very important in the design, operation
and control of impact systems. To determine the peak force we need a contact
model. However, in many cases, what is important is to be able to make a difference
between two designs. For this T−

c can be equivalently used as it is monotonically
related to the peak contact force, and it directly reflects the effect of the mechanical
design parameters.

The decomposition and the representative relative motion described above can
also be established using the original parametrization without the need to explicitly
introduce uc and ua in the kinetic energy decomposition and in the dynamic
equations. It can be shown, [11], that

Tc =
1

2
vT
c Mvc and Ta =

1

2
vT
a Mva (17)

where

vc = Pcv and va = Pav (18)

and

Pc = M−1AT
(
AM−1AT

)−1
A and Pa = I−Pc (19)

represent projector operators, where I is the n×n identity matrix. These projector
operators can also be used to decompose the dynamic equations. Here we do not
present those general relations as the main objective is to illustrate the importance
of the effective kinetic energy, Tc. Based on Eqs. (17) and (19) Tc can also be
written as

Tc =
1

2
vTAT

(
AM−1AT

)−1
Av (20)

where Meff = AT(AM−1AT)−1A can be seen as an effective mass matrix of the
impact associated with the original parametrization of the motion of the system,
v. From the above the effective pre-impact kinetic energy can be determined by
substituting the values of the generalized velocities at the contact onset t0, the
beginning of the compression phase, which are included in v−.

A challenge is generally to determine what the representative relative motion is,
as the contact interaction due to the impact is generally quite complex; the rigid
surface assumption will certainly not hold and the deformation and dissipation
properties can be very complicated to identify. A first guess can be established via
considering the contact normal defined by the geometry of the interfaces. Then a
sensitivity analysis can also be performed by varying the representative relative
motion within a range around the normal.
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Fig. 3 Model of a double pendulum used as test example

3 Numerical example: double pendulum

The suitability of the effective pre-impact kinetic energy T−
c as indicator of the

contact force intensity during an impact was assessed in a set of numerical experi-
ments with the model of a planar double pendulum (Fig. 3). The mass of the links
is assumed to be concentrated at the tip of each rod (points P1 and P2). Point
P2 can collide with the ground, located at a distance h along the y axis from the
origin of the global reference frame. Similar models can be found in the literature,
e.g. [14], [7]; the physical parameters of the current example have been chosen to
match those proposed in [7] and are detailed in Table 1.

Table 1 Physical parameters of the double pendulum used as example

Link 1 Link 2

mass [kg] length [m] mass [kg] length [m]

5.0 0.5 2.0 0.25

During the motion prior to the contact with the ground, the double pendulum
is a 2-DoF system. Following the developments in Section 2, the contact between
the pendulum and the floor can be considered with a representative motion of point
P2 along the y direction relative to the ground, so that uc = ẏ2. This allows one to
evaluate the effective pre-impact kinetic energy T−

c using Eq. (20), based on the
configuration and velocities of the system at the contact onset. Determining the
value of the normal contact force fn, however, requires the simulation of the motion
during the impact interval using a continuous force-based model to represent the
interaction between the pendulum and the ground.
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Load Assessment and Analysis of Impacts in Multibody Systems 9

The system configuration can be described with a set of two independent co-
ordinates, φ1 and φ2. Eq. (9) for this example becomes

[
l1 sinφ1 + l2 sin (φ1 + φ2) l2 sin (φ1 + φ2)

] [ φ̇1

φ̇2

]
= ẏ2 = uc (21)

where A =
[
l1 sinφ1 + l2 sin (φ1 + φ2) l2 sin (φ1 + φ2)

]
is the 1× 2 impact Jaco-

bian.

3.1 Initial simulation set

An initial set of simulations was carried out to compare the evolution of the effec-
tive pre-impact kinetic energy T−

c and the peak normal force for different config-
urations of the system.

For each set of simulations, the y coordinate of point P2 was set to y2 = −h. The
x and y components of the velocity of the same point, ẋ2 and ẏ2, were also given
fixed initial values. Then, coordinate x2 was varied within a range

[
xmin
2 xmax

2

]
to

generate different impact configurations. It must be noted that for each position of
point P2 given by (x2, y2) there are two possible configurations of the mechanism,
with φ2 > 0 and with φ2 < 0. Both cases have been considered in this study. The
corresponding velocity problem for each configuration was solved afterwards, with
ẋ2 and ẏ2 as inputs, to obtain φ̇1 and φ̇2.

In an initial approach, the contact between point P2 and the ground was con-
sidered to be frictionless and perfectly elastic, resulting in an effective coefficient
of restitution eeff = 1.0. The vertical distance between the floor and the global
origin was set to h = 0.6 m. For this distance, a configuration range −0.38 m
≤ x2 ≤ 0.38 m was chosen. This range avoids situations in which the mechanism
is too close to its limit configurations (i.e. the two rods are aligned and φ2 = 0).
In the initial simulations, the normal impact velocity was set to ẏ−2 = −1 m/s,
and the tangential one was varied from ẋ2 = 0 m/s up to ẋ2 = 2.5 m/s.

Once the generalized coordinates and velocities at the contact onset were de-
termined, the pre-impact kinetic energy T− and effective kinetic energy T−

c of the
double pendulum were evaluated using Eqs. (16) and (20). Afterwards, a forward-
dynamics simulation from time t0 when the impact starts to time tF in which the
impact ends was carried out. The trapezoidal rule was used as numerical integra-
tor, with an integration step-size ∆t = 10−6 s. During the simulation, the normal
contact force fn can be evaluated according to any of the several force models
available in the literature [15]. The peak value of this force during each collision,
fpk
n , characterizes the impact intensity. In this first set of simulations, the normal

contact force was evaluated using the nonlinear spring-damper representation de-
scribed in [7] to model the pendulum-ground interaction. The expression of the
normal contact force according to this model is

fn
(
δ, δ̇
)

= −kδp − (ηδp) δ̇ (22)

where p = 3/2 according to Hertzian theory, k is the contact stiffness in the normal
direction (set to k = 109N/m3/2 in the example), δ is the separation between the
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10 Francisco González et al.

Fig. 4 Total pre-impact kinetic energy (T−), effective pre-impact kinetic energy (T−
c ), and

peak normal contact force (fpkn ) for the different impact configurations of the double pendulum
(left); correlation between total and effective kinetic energies and peak normal force (right).
Velocities of the end effector at t0: ẋ2 = 0 m/s and ẏ2 = −1 m/s. The values correspond to
the configuration in which φ2 < 0

bodies in contact (in this example, δ = y2 + h), and η is a hysteresis damping
factor

η =
kd

eeffu
−
c

(23)

where u−c is the initial penetration velocity and d is a dimensionless factor that
depends only on eeff and u−c , and is implicitly obtained by solving [7]

1 + d/eeff
1− d = ed(1+1/eeff) (24)

Other existing contact models were also used in the simulations; details are pro-
vided in Section 3.2.

Figure 4 shows the peak normal contact force fpk
n , the pre-impact kinetic

energy T−, and the effective pre-impact kinetic T−
c for different values of the x2

coordinate of the pendulum tip. The velocities of point P2 at the contact onset t0
were set to ẋ2 = 0 m/s and ẏ2 = −1 m/s. Fig. 4 was obtained for the configuration
in which φ2 < 0. The condition ẋ2 = 0 causes both the configuration and the
velocities of the system to be symmetric for φ2 < 0 and φ2 > 0. Therefore, the
right plot in Fig. 4 would remain unchanged if the configurations with φ2 > 0 were
considered instead, and the left plot would be a mirror reflection of the current one.
Fig. 4 demonstrates that the total pre-impact kinetic energy T− of the system at
time t0 when the contact is established does not convey enough information about
the peak contact force fpk

n that will be developed during the impact. Conversely,
T−
c can be used as a valid indicator to represent this. An increase in T−

c results in
an increase of the peak force fpk

n reached. The right plot in Fig. 4 shows that this
correlation is not linear, but it confirms the existence of a monotonic relationship
between T−

c and the peak force during impact.
Figures 5 and 6 correspond to the case in which ẋ2 = 1 m/s and ẏ2 = −1 m/s.

In this case, the two possible configurations with φ2 < 0 and φ2 > 0 cannot be
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Fig. 5 Total pre-impact kinetic energy (T−), effective pre-impact kinetic energy (T−
c ), and

peak normal contact force (fpkn ) for the different impact configurations of the double pendulum
(left); correlation between total and effective kinetic energies and peak normal force (right).
Velocities of the end effector at t0: ẋ2 = 1 m/s and ẏ2 = −1 m/s. The values correspond to
the configuration in which φ2 < 0

Fig. 6 Total pre-impact kinetic energy (T−), effective pre-impact kinetic energy (T−
c ), and

peak normal contact force (fpkn ) for the different impact configurations of the double pendulum
(left); correlation between total and effective kinetic energies and peak normal force (right).
Velocities of the end effector at t0: ẋ2 = 1 m/s and ẏ2 = −1 m/s. The values correspond to
the configuration in which φ2 > 0

considered equivalent as they are no longer symmetric (because ẋ2 6= 0). In these
cases the maximum force and T−

c follow again the same trends, further confirming
our previous conclusions. These results also show more explicitly that the changes
in the total pre-impact kinetic energy do not reflect how the maximum force varies.
It is the effective pre-impact kinetic energy T−

c that can represent these variations.
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12 Francisco González et al.

Fig. 7 Effective pre-impact kinetic energy and peak normal contact force with different contact
models for the selected range of impact configurations of the double pendulum (left); correlation
between effective kinetic energy and peak normal force (right). Velocities of the end effector at
t0: ẋ2 = 1 m/s and ẏ2 = −1 m/s. The values correspond to the configuration in which φ2 < 0.
The coefficient of restitution was set to eeff = 0.5

3.2 Effect of contact force model

As mentioned in Section 3.1, many models are available for the evaluation of the
contact force between two bodies. Most of these are based on Hertz’s formula
for the contact force between two spheres, and they represent the contact as a
viscoelastic phenomenon. Accordingly, the normal contact force takes the form

fn
(
δ, δ̇
)

= −kδp − cδmδ̇ (25)

where k and c stand for the stiffness and damping of the contact, which can be
either linear or non-linear, depending on the value of the exponent p. The vast
majority of non-linear models consider p = 3/2, following Hertzian theory; an
example of this is the contact model used in Section 3.1. Two more models were
employed in this study. The first one is the formula proposed in [10]

fn
(
δ, δ̇
)

= −kδp
[
1 +

3 (1− eeff )

2

δ̇

u−c

]
(26)

The second one is the expression developed for low impact velocities in [12],

fn
(
δ, δ̇
)

= −kδp
[

1 +
3
(
1− e2eff

)
4

δ̇

u−c

]
(27)

The three models corresponding to Eqs. (22), (26), and (27) were used in
the simulation of the motion of the double pendulum. The selection of a differ-
ent contact model causes a variation of the normal force fn observed during the
simulation. It must be noted that these three force models are equivalent if the
coefficient of restitution is eeff = 1, so the simulations designed to compare them
were carried out selecting eeff = 0.5. Fig. 7 shows the correlation between T−

c

and fpk
n for each contact force model. The results show that the three models
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Fig. 8 Effective pre-impact kinetic energy and peak normal contact force with different co-
efficients of restitution eeff for the selected range of impact configurations of the double
pendulum (left); correlation between effective kinetic energy and peak normal force (right).
Velocities of the end effector at t0: ẋ2 = 1 m/s and ẏ2 = −1 m/s. The values correspond to
the configuration in which φ2 < 0

predict very similar behaviour and values for the maximum normal force. This
fact is in agreement with similar results reported in the literature [20]. The results
also show, as discussed in Section 2, the suitability of T−

c as indicator of impact
intensity does not depend on the force model chosen to obtain the normal force
value.

3.3 Variation of the coefficient of restitution

The relationship between T−
c and fpk

n observed in Section 3.1 can be generalized
for the case of non perfectly elastic impacts (eeff < 1), in which damping causes
the dissipation of a part of the kinetic energy during the impact. Another series of
simulations was performed in which the effective coefficient of restitution was var-
ied from eeff = 1 to eeff = 0.3. The corresponding damping parameter required
in Eq, (22) was computed for each case solving Eq. (24). Results for ẋ2 = 1 m/s
and ẏ2 = −1 m/s, with φ2 < 0 are shown in Fig. 8. The rest of the investigated
cases followed similar trends.

Figure 8 confirms that, while a variation in the effective coefficient of restitution
modifies the maximum normal contact force fpk

n , the relationship between fpk
n and

T−
c still holds and the shapes of the two curves follow the same trend.

3.4 Effect of friction

We also investigated the effect of friction. The simulations were repeated consid-
ering friction between the ground and the pendulum tip. The friction coefficient
range investigated was µ ∈ [0, 0.3]. The tangent force at the contact interface was
evaluated in the simulations using the bristle friction model described in [7]. Re-
sults are shown in Fig. 9. It can be seen that, even though the presence of friction
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14 Francisco González et al.

Fig. 9 Effective pre-impact kinetic energy and peak normal contact force for different values of
the friction coefficient µ for the selected range of impact configurations of the double pendulum
(left); correlation between effective kinetic energy and normal force (right). Velocities of the
end effector at t0: ẋ2 = 1 m/s and ẏ2 = −1 m/s. The values correspond to the configuration
in which φ2 < 0

Fig. 10 A model of a wheeled robot in contact with an obstacle

Table 2 Physical parameters of the wheeled robot

mb [kg] Izb [kgm2] mw [kg] Izw [kgm2] hG [m] b1 [m] b2 [m] rw [m]

280.0 26.716 20.0 0.7812 0.261 0.4175 0.4175 0.2795

modifies the maximum normal force curve, the correlation between peak normal
force and effective kinetic energy remains: the peak normal force changes the same
way as T−

c does.

4 Numerical example: wheeled vehicle

A two-axle wheeled robot (Fig. 10) operating on flat terrain was selected as test
problem. For generality, the wheel-terrain contact is represented using constitu-
tive relations. This makes it possible to model the system with five independent
coordinates: the x and y coordinates of the centre of mass of the vehicle chassis,
and the rotations of the main body, θ, and the wheels, θ1 and θ2. The mass and
moment of inertia of the chassis about its centre of mass are mb and Izb. Each
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Fig. 11 Total (T−) and effective (T−
c ) pre-impact kinetic energy and peak normal contact

force (fpkn ) for different values of the obstacle angle β in the wheeled robot impact example

Fig. 12 Effective pre-impact kinetic energy and peak normal contact force during impact of
the wheeled robot example for different values of the coefficient of restitution (left) and for
several contact models with eeff = 0.8 (right)

wheel has mass mw, radius rw, and moment of inertia Izw. The physical properties
of the system are summarized in Table 2.

The impact of the vehicle against a rigid obstacle was considered as shown in
Fig. 10 for a range of values of angle β from 10◦ to 90◦, with 10◦ increments. At
the time of contact onset, t0, the vehicle is moving forward with velocity ẋ = 1 m/s
and both sets of wheels are assumed to roll on the terrain. The effective pre-impact
kinetic energy T−

c was evaluated for each case considering that the motion along
the normal direction at the contact point is the representative relative motion to
be constrained by the impact. The same time integration algorithm was employed
as described in Section 3. In the first set of simulations the normal contact force
was represented using the model of [7] without friction.

Results in Fig. 11 show that T−
c predicts accurately the evolution of the peak

contact force fpk
n . It is worth noting that the highest value of the peak normal

force does not occur for an obstacle angle β = 90◦, but the maximum is reached
around β = 70◦.

Figure 12 contains the results of two other sets of simulations. The first one
includes the variation of the coefficient of restitution between eeff = 1 and eeff =
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16 Francisco González et al.

Fig. 13 Experimental setup using two dual-pantograph devices

0.7. The peak impact force experienced significant changes as a consequence. While
the maximum was about 132 N with eeff = 1, it increased beyond 240 N in the case
of eeff = 0.7. The second series of simulations involved repeating the simulations
with the two additional contact force models introduced in Section 3.2, with a
coefficient of restitution eeff = 0.8. This resulted in a variation of more than 25%
in the maximum value of the peak force. In all cases, however, the pre-impact
effective kinetic energy correctly predicted the angle for which the maximum peak
force was observed, as well as the trend of change of this quantity with angle β.

5 Experimental illustration

An experimental testbed based on two dual-pantograph devices (Fig. 13) was
used to investigate the correlation between the pre-impact effective kinetic energy,
T−
c , and the peak normal force during the establishment of the contact. Each

device was equipped with optical encoders at the motor joints and high-resolution
force/torque sensors at the end effector. For this study, one of these devices (passive
device) emulated a stiff environment with a flat surface and the other (active
device) came to a contact interaction with the passive one at one single contact
point. An interface with a conical shape was mounted onto the end effector of the
active device to develop single-point contact with the flat end plate of the passive
system.

The trajectories were programmed so that the system motion can be considered
planar. The planes of the two pantographs were parallel so they can be considered
with one single planar five-bar linkage model, shown in Fig. 14. Angles qi denote
the absolute orientation of the ith link (i = 1, 2, 3, 4), li and ai represent the length
and the position of the centre of mass of the ith link, mi and Ii denote the link
mass and moment of inertia about its centre of mass, and mEE stands for the

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Load Assessment and Analysis of Impacts in Multibody Systems 17

Table 3 Physical parameters of the dual-pantograph device

Parameter Value Description
l1, l3 0.1449 m Length of links 1 and 3
l2, l4 0.1984 m Length of links 2 and 4
a1, a3 0.0519 m Position of the COM of links 1 and 3
a2, a4 0.1081 m Position of the COM of links 2 and 4
l5 0.0445 m Distance between axes of actuated joints
m1, m3 0.1202 kg Mass of links 1 and 3
m2, m4 0.1084 kg Mass of links 2 and 4
mEE 0.3144 kg Mass of the end effector
I1, I3 0.0004 kgm2 Moment of inertia of links 1 and 3
I2, I4 0.0007 kgm2 Moment of inertia of links 2 and 4

q1

q3

q4

q2mi, Ii

mEE

ai

li

l5

y

x

0.2 m

stiff
wall

γ vEE

Fn

_

0
.2

2
5
 m

Fig. 14 Planar dynamic model of the pantograph (left) and contact configuration considered
in the experiments (right)

Table 4 Pre-impact quantities for the five experimental cases

Case γ ‖v−
EE‖ (m/s) T−

c (mJ) T− (mJ) ξ

1 −7.58◦ 0.1955 10 10 1
2 0◦ 0.1921 9.82 10 0.98
3 15◦ 0.1857 8.57 10 0.86
4 30◦ 0.1812 6.56 10 0.66
5 45◦ 0.1794 4.28 10 0.43

mass of the end effector. Parameter l5 indicates the distance between the axes of
the two base joints. The values of these parameters are summarized in Table 3.

We performed five sets of experiments where the end point of the active device
impacted the flat end plate of the passive one with different velocities. All the
experiments were carried out with the same asymmetric impact configuration (Fig.
14) and a total pre-impact kinetic energy of 10 mJ. The five cases correspond to
different directions of the velocity vector of the reference point. Table 4 contains the
experiment parameters v−

EE and γ, magnitude and angle with respect to the y axis
of the end effector velocity, respectively, and the values of the pre-impact kinetic
energy and the effective pre-impact kinetic energy T−

c . In this table, parameter ξ
indicates the ratio between effective pre-impact kinetic energy and total pre-impact
kinetic energy.
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Table 5 Experimental results for the five cases. x̄ and σ (x) stand for the mean and the
standard deviation of quantity x respectively

Case T̄− (mJ) σ
(
T−) (mJ) T̄−

c (mJ) σ
(
T−
c

)
(mJ) f̄n (N) σ

(
fpkn

)
(N)

1 9.83 0.166 9.82 0.168 33.5 0.82
2 9.89 0.071 9.68 0.075 31.9 1.13
3 10.02 0.092 8.54 0.091 29.9 0.85
4 10.21 0.165 6.68 0.133 25.8 1.33
5 10.25 0.086 4.46 0.035 20.0 2.42

Fig. 15 Pre-impact kinetic energies T− and T−
c (left) and peak normal force fpkn for each

case. The error bars show the mean and one standard deviation

For each pre-impact velocity, the experiment was performed three times and
the mean and the standard deviation of T−, T−

c , and the peak normal force,
fpk
n , were evaluated. Their values are shown in Table 5. The T−

c obtained from
the measurements of the encoders is in good agreement with the analytical and
computational predictions of Table 4.

The plots in Fig. 15 show the total and effective pre-impact kinetic energies T−

and T−
c and the peak normal force fpk

n , respectively, for each set of experiments. As
mentioned, the experiments are designed in a way in which the total pre-impact
energy T− is always 10 mJ. Conversely, T−

c varies for each case. Note that for
this configuration, the case of maximum T−

c does not correspond with the pre-
impact velocity of the end effector aligned with the representative relative motion
of impact. The plot on the right shows that the peak of the maximum normal
force decreases for impacts with lower T−

c . This further substantiates our claim
that the proposed performance indicator can be used to predict the intensity of
the impact loads.

Fig. 16 shows the peak force fpk
n as a function of T−

c . The plot shows both
the mean and the standard deviation of this quantity. A second-order polynomial
adjusted by least-squares is also included in the plot to show the good correlation
between the two quantities

6 Conclusions

We illustrated in this paper that the so-called effective pre-impact kinetic energy
can be used to analyse the intensity of impact. This results in a parametric perfor-
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Fig. 16 Peak normal force fpkn as a function of the effective pre-impact kinetic energy T−
c

mance indicator that can be employed to compare different designs and investigate
how parameter changes affect the intensity of contact onset. The evaluation of this
quantity can be achieved via decomposing the total pre-impact kinetic energy us-
ing the representative relative motion of impact. The mass and inertia properties
and the configuration of the mechanical system constitute the only information
required for this; it avoids the need for a continuous contact force model. Infor-
mation about the contact stiffness and damping is not required.The suitability of
the indicator to predict the variation of the peak normal force experienced dur-
ing an impact when the system parameters change was confirmed with numerical
simulations and experiments.
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Appendix A: Coordinate transformation

The dynamics of the two circular objects selected as example in Section 2.1 can be expressed
in terms of the set of absolute velocities q̇ = [ẋ1 ẋ2]T with Eq. (2)

Mq̈ = ATλ (28)

where

M =

[
m1 0
0 m2

]
; q̈ =

[
ẍ1
ẍ2

]
; ATλ =

[
−fc
fc

]
(29)

The system motion can also be described in terms of a new set of velocities ḋ =
[
ḋc ḋa

]T
,

where ḋc = ẋ2 − ẋ1 and ḋa = m1
m2

ẋ1 + ẋ2. The relation between the two velocity sets is given

by

ḋ =

[
ḋc
ḋa

]
=

[
A
B

]
q̇ (30)

where

A =
[
−1 1

]
; B =

[
m1/m2 1

]
(31)

Matrix B has been selected to verify the decoupling condition AM−1BT = 0.
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The dynamics can be expressed in terms of the new set of velocities ḋ via the velocity
transformation

q̇ = Rḋ (32)

where R is the constant matrix

R =
1

m1 +m2

[
−m2 m2

m1 m2

]
(33)

and so differentiation of Eq. (32) with respect to time gives

q̈ = Rd̈ (34)

Pre-multiplying Eq. (28) with RT and substituting in it the expression of q̈ from Eq. (34)

allows one to obtain the dynamics equations in terms of the set of velocities ḋ, as expressed
in Eq. (4)

RTMRd̈ = RTATλ (35)

where

RTMR =
1

m1 +m2

[
m1m2 0

0 m2
2

]
; RTATλ =

[
fc
0

]
(36)
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9. Hirschkorn, M., Kövecses, J.: The role of the mass matrix in the analysis of mechanical
systems. Multibody System Dynamics 30(4), 397–412 (2013)

10. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroim-
pact. Journal of Applied Mechanics 42(2), 440–445 (1975)
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