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a b s t r a c t

The freshwater mussel family Hyriidae (Mollusca: Bivalvia: Unionida) has a disjunct trans-Pacific distri-
bution in Australasia and South America. Previous phylogenetic analyses have estimated the evolutionary
relationships of the family and the major infra-familial taxa (Velesunioninae and Hyriinae: Hyridellini in
Australia; Hyriinae: Hyriini, Castaliini, and Rhipidodontini in South America), but taxon and character
sampling have been too incomplete to support a predictive classification or allow testing of biogeograph-
ical hypotheses. We sampled 30 freshwater mussel individuals representing the aforementioned hyriid
taxa, as well as outgroup species representing the five other freshwater mussel families and their marine
sister group (order Trigoniida). Our ingroup included representatives of all Australian genera. Phyloge-
netic relationships were estimated from three gene fragments (nuclear 28S, COI and 16S mtDNA) using
maximum parsimony, maximum likelihood, and Bayesian inference, and we applied a Bayesian relaxed
clock model calibrated with fossil dates to estimate node ages. Our analyses found good support for
monophyly of the Hyriidae and the subfamilies and tribes, as well as the paraphyly of the Australasian
taxa (Velesunioninae, (Hyridellini, (Rhipidodontini, (Castaliini, Hyriini)))). The Hyriidae was recovered
as sister to a clade comprised of all other Recent freshwater mussel families. Our molecular date
estimation supported Cretaceous origins of the major hyriid clades, pre-dating the Tertiary isolation of
South America from Antarctica/Australia. We hypothesize that early diversification of the Hyriidae was
driven by terrestrial barriers on Gondwana rather than marine barriers following disintegration of the
super-continent.

� 2015 Published by Elsevier Inc.
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1. Introduction

The phylogenetic relationships among the freshwater mussels
of the family Hyriidae (Mollusca: Bivalvia: Unionida) have received
considerable attention but little resolution (Walker et al., 2014).
Representative species have been included in morphological
(Graf, 2000), molecular (Bogan and Hoeh, 2000; Graf and Ó
Foighil, 2000a,b; Graf, 2002; Hoeh et al., 2002; Baker et al., 2003,
2004; Walker et al., 2006; Whelan et al., 2011; Pfeiffer and
Graf, 2013; Marshall et al., 2014), and combined (Hoeh et al.,
2001, 2009; Roe and Hoeh, 2003; Graf and Cummings, 2006)
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phylogenetic analyses, but sampling has been sparse and repetitive
(Graf, 2013). Moreover, the analytical methods employed by the
most comprehensive analyses are, in many cases, dated. Three
outstanding problems in need of clarification are (1) the reported
paraphyly of the Australasian taxa relative to those of South
America, (2) the position of the Hyriidae among the other freshwa-
ter mussels of the order Unionida, and (3) molecular clock
estimates of clade ages. The objectives of this study are to test
the family-level relationships of the Australasian freshwater
mussels using broader taxon and molecular character sampling
than has previously been brought to bear and to do so in a rigorous
molecular phylogenetic context.

The Hyriidae is composed of around 90 Recent species in 16
genera (Graf and Cummings, 2007; Pereira et al., 2014; Walker
et al., 2014). The family has a disjunct distribution, occurring in
ivalvia:

http://dx.doi.org/10.1016/j.ympev.2015.01.012
mailto:dgraf@uwsp.edu
http://dx.doi.org/10.1016/j.ympev.2015.01.012
http://www.sciencedirect.com/science/journal/10557903
http://www.elsevier.com/locate/ympev
http://dx.doi.org/10.1016/j.ympev.2015.01.012


79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

2 D.L. Graf et al. / Molecular Phylogenetics and Evolution xxx (2015) xxx–xxx

YMPEV 5110 No. of Pages 9, Model 5G

9 February 2015
South America and Australasia (including Australia, New Guinea,
the Solomon Islands, and New Zealand). Like almost all freshwater
mussels of the order Unionida, hyriids are obligate parasites of
freshwater fishes during their larval stages (Wächtler et al.,
2001; Graf and Cummings, 2006), and this period of encystment
on the gills or fins of their hosts is the primary dispersal phase of
their life cycle (Graf, 1997, 2013). As adults, freshwater mussels
are sedentary filter feeders. Females exhibit parental care, brood-
ing their larvae in the interlamellar spaces of their ctenidia. Such
behavior provides not only osmotic protection in nutrient-poor
waters but also inertia in lotic habitats (Needham, 1930; Pennak,
1985; Gray, 1988). This peculiar life history makes freshwater
mussels, including hyriids, poor dispersers across terrestrial and
marine barriers. Consequently, disjunctions among freshwater
mussels are strong evidence for vicariance, and the recent litera-
ture has attributed the current distribution pattern of the Hyriidae
to the Mesozoic disintegration of Gondwana (Graf and Ó Foighil,
2000b; Walker et al., 2014).

Historically, the family-group level classifications of the
Neotropical and Australasian hyriids were studied in isolation
and without the benefit of modern cladistic theory, continental
drift theory, or molecular sequence data. The current taxonomy
of South American hyriids dates largely from Parodiz and Bonetto
(1963), with three endemic taxa: Rhipidontini (= Diplodontini),
Castaliini, and Hyriini. Largely contemporaneously, McMichael
and Hiscock (1958) divided the Australasian hyriids among four
subfamilies: Hyridellinae, Cucumerunioninae, Velesunioninae,
and Lortiellinae. Both arrangements were based mostly on shell
characters (e.g., external sculpture, shell outline). Each of these
faunas on opposite sides of the Pacific Ocean were regarded as
endemic radiations, though waif dispersal and hypothetical ‘‘land
bridges’’ had been invoked to explain their disjunction (Ortmann,
1921; Modell, 1942; McMichael and Hiscock, 1958; Parodiz and
Bonetto, 1963; Walker et al., 2001).

Molecular phylogenetic studies since 2000 have shed new light
on the traditional classification of the Australasian hyriids and
their relationships to those of South America. Graf and Ó Foighil
(2000b) recovered the Australasian fauna as paraphyletic relative
to the South American taxa, and this result has been confirmed
by subsequent re-analysis (Graf and Cummings, 2006). Based
on these results, the family-group level classification of the
Hyriidae was revised to delimit two subfamilies: Velesunioninae
in Australasia and Hyriinae in Australasia and South America.
The latter subfamily is composed of four tribes: Hyridellini in
Australasia and the three Neotropical tribes listed above (Bieler
et al., 2010). Ponder and Bayer (2004) synonymized the Lortiellinae
with the Velesunioninae on anatomical grounds, and this result
was confirmed by Graf and Cummings (2006). The Cucumerunion-
inae is currently regarded as a synonym of the Hyridellini (Graf and
Cummings, 2006; Marshall et al., 2014; Walker et al., 2014),
although no phylogenetic analysis has tested this hypothesis. The
current classification of the Hyriidae is summarized in Table 1.
Table 1
Classification, diversity, and biogeography of the Hyriidae. Summarized from Graf and Cu

Taxon Generic richness Sp

HYRIIDAE Swainson, 1840 16 91
VELESUNIONINAE Iredale, 1934 5 13
HYRIINAE s.s.

HYRIDELLINI McMichael, 1956 (1934) 4 14
HYRIINI s.s. 2 4
CASTALIINI Morretes, 1949 3 17
RHIPIDODONTINI Starobogatov, 1970 2 43

Please cite this article in press as: Graf, D.L., et al. Molecular phylogenetic an
Unionida) and the paraphyly of Australasian taxa. Mol. Phylogenet. Evol. (201
While the classification of the Hyriidae has reached a consensus
(Bieler et al., 2010; Carter et al., 2011), the phylogenetic position of
the family among freshwater mussels has remained contentious.
The monophyly of the Hyriidae is well supported (Graf and
Cummings, 2006; Whelan et al., 2011), but analyses emphasizing
different character sets have supported various sister groups for
the family. Traditionally, the six Recent families of the Unionida
were divided into two superfamilies based solely on larval
morphology (Parodiz and Bonetto, 1963). The Unionoidea (=
‘‘Unionacea’’) was composed of the three families with glochid-
ium-type larvae: Unionidae, Margaritiferidae, and Hyriidae. The
families Etheriidae, Mycetopodidae, and Iridinidae comprised the
Etherioidea (= ‘‘Mutelacea’’), diagnosed by the presence of lasidi-
um-type larvae (Wächtler et al., 2001; Graf and Cummings,
2006). However, cladistic analyses of larval and adult morphology
supported a sister relationship between the Hyriidae and the
lasidium-bearing mussels based on synapomorphies of the adult
ctenidia and posterior mantle apertures (Graf, 2000; Hoeh et al.,
2001; Roe and Hoeh, 2003; Graf and Cummings, 2006). Graf
(2000) and Graf and Cummings (2006) advocated reclassifying
the Hyriidae among the Etherioidea.

Contrary to morphological analyses, molecular phylogenetic
studies of cytochrome oxidase subunit I (COI) have generally
recovered the Hyriidae as sister to the five other extant families
of the order (Bogan and Hoeh, 2000; Hoeh et al., 2001, 2002;
Walker et al., 2006). Graf and Cummings (2006) reanalyzed the
published COI data in combination with morphology and available
28S (large nuclear ribosomal subunit) sequences, and they
recovered the Hyriidae as sister to the lasidium-bearing mussels
– albeit with weak support. More recently, Whelan et al. (2011)
analyzed COI and 28S sequences for representatives of five fresh-
water mussel families with mixed results. Whereas parsimony
resolved a (Hyriidae + Margaritiferidae + Unionidae) clade, likeli-
hood-based methods weakly supported Hyriidae as sister to the
remainder of the Unionida. The compromise solution has been to
classify the Hyriidae in a separate superfamily, Hyrioidea (Hoeh
et al., 2009; Bieler et al., 2010; Carter et al., 2011).

A common feature of the analyses reviewed above is the inade-
quacy of character and taxon sampling to rigorously test either the
interfamilial relationships of the Hyriidae or the sister group of the
family. Too much emphasis has been placed on single character
sets and serendipitous representation of hyriid lineages. Moreover,
many of these studies relied strictly upon maximum parsimony,
demonstrated to produce unreliable results with deep divergences
and fast-evolving characters like COI (Graf and Cummings, 2010).
While previous results have been sufficient to reject the traditional
taxonomic arrangement, they provide little basis for a stable and
predictive classification. We set out to test the inter-generic rela-
tionships of the Australian Hyriidae and the position of the family
with (1) broader, targeted taxon sampling, (2) a larger character set
including both nuclear and mitochondrial DNA, and (3) methods of
analysis that extend beyond maximum parsimony.
mmings (2007), Walker et al. (2014) and Pereira et al. (2014).

ecies richness Geographical distribution

Australia, New Guinea

Australia, New Guinea, Solomon Islands, New Zealand
South America
South America
South America

alysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia:
5), http://dx.doi.org/10.1016/j.ympev.2015.01.012
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2. Materials & methods

2.1. Taxon sampling

Sampled taxa are listed in Table 2. Ingroup taxa were chosen to
represent both of the subfamilies and all of the tribes of the Hyriidae
from Australasia and South America (Table 1). The outgroup was
composed of taxa representing the five other extant families as well
as Neotrigonia (Trigoniida), the sister group to freshwater mussels
(Hoeh et al., 1998; Giribet and Wheeler, 2002). All Australian
freshwater mussel genera were represented (Walker et al., 2014),
and all ingroup specimens were identified by the authors.

2.2. Character sampling

Characters for phylogenetic analyses were drawn from three
genes: mitochondrial protein-coding cytochrome oxidase subunit
I (COI), the large mitochondrial ribosomal subunit (16S), and the
large nuclear ribosomal subunit (28S). All novel sequences were
obtained using standard PCR and dye-terminator sequencing
methods (Graf and Ó Foighil, 2000a,b). Primer sequences used for
amplification and sequencing are listed in Table 3. Several out-
group DNA sequences and five ingroup sequences were published
previously and obtained from GenBank (http://www.ncbi.nlm.nih.
gov/genbank/). References and accession numbers are cited in
Table 2.

Ribosomal 16S and 28S sequences were aligned using CLUSTAL
X (Larkin et al., 2007) and refined by eye using Mesquite version
Table 2
Specimens analyzed. Voucher specimens have been (or will be) deposited at the Academy o
History (FMNH), Chicago, Illinois Natural History Survey (INHS), Champaign, and the Unive
indicates chimeric taxa.

Taxon Locality Genbank Accession #

28S 16S

TRIGONIOIDA: TRIGONIDAE
Neotrigonia margaritacea � Australia (marine) DQ279963 DQ28
UNIONIDA: UNIONIDAE
Unio pictorum � Europe AF305383 DQ06
MARGARITIFERIDAE
Margaritifera margaritifera � Europe JN243869 AF303
IRIDINIDAE
Chambardia wahlbergi � Zambia JN243864 KP184
MYCETOPODIDAE
Anodontites elongata Peru KP184872 KP184
ETHERIIDAE
Etheria elliptica Zambia KP184873 KP184
HYRIIDAE
Triplodon corrugatus (n = 2) Peru JN243868 KP184

KP184876 KP184
Castalia ambigua Peru JN243867 KP184
Diplodon demeraraensis (n = 2) Guyana KP184874 KP184

KP184875 KP184
Cucumerunio novaehollandiae (n = 2) New South Wales KP184877 KP184

KP184878 KP184
Hyridella australis (n = 2) New South Wales KP184883 KP184

KP184884 KP184
Hyridella depressa (n = 2) New South Wales KP184879 KP184

KP184880 KP184
Hyridella drapeta (n = 2) New South Wales KP184881 KP184

KP184882 KP184
Microdontia anodontaeformis � New Guinea KP184885 KP184
Alathyria jacksoni New South Wales KP184888 KP184
Alathyria pertexta (n = 2) Queensland KP184886 KP184

New South Wales KP184887 KP184
Alathyria profuga (n = 2) New South Wales KP184889 KP184

New South Wales KP184890 KP184
Lortiella froggatti � Western Australia KP184891 KP184
Velesunio ambiguus (n = 2) New South Wales KP184892 KP184

KP184893 KP184
Westralunio carteri (n = 2) Western Australia KP184894 KP184

KP184895 KP184

Please cite this article in press as: Graf, D.L., et al. Molecular phylogenetic an
Unionida) and the paraphyly of Australasian taxa. Mol. Phylogenet. Evol. (2015
2.75 (Maddison and Maddison, 2011). Protein-coding COI was
translated into amino acids and nucleotides were aligned manually
by codon position.

2.3. Phylogenetic analyses

The three character partitions (COI, 16S and 28S) were analyzed
separately and in combination using maximum parsimony (MP)
and maximum likelihood (ML). Bayesian inference (BI) was applied
only to the combined dataset. An incongruence length difference
test (ILD = partition homogeneity test) was implemented in PAUP⁄

version 4b10 (Swofford, 2002) to confirm the congruence of phylo-
genetic signals among the three character sets (Farris et al., 1995).

PAUP⁄ (Swofford, 2002) was used for all MP analyses. Tree
searches were performed first as heuristic searches with 100 ran-
dom sequence additions and default settings. The resultant trees
were then used as the starting trees for another bout of tree
searching to work around a known PAUP⁄ bug (http://paup.csit.
fsu.edu/problems.html). Bootstrap analyses (2000 replicates,
heuristic search with 10 random sequence additions) were
employed to measure clade support.

For likelihood-based analyses (ML and BI), COI was analyzed
both as a single partition and as three partitions (i.e., one for each
codon position). Thus, there were two different combined datasets:
3 partitions (28S + 16S + COI) and 5 partitions (28S + 16S + 3 COI
codon positions). jModelTest version 2.1.1 (Darriba et al., 2012)
was used to determine the optimal substitution model for each
partition under the Akaike information criterion. All ML analyses
f Natural Sciences of Drexel University (ANSP), Philadelphia, Field Museum of Natural
rsity of Michigan Museum of Zoology (UMMZ), Ann Arbor, USA as listed. A dagger (�)

Source

COI

0034 U56850 Hoeh et al. (1998), Giribet et al. (2006)

0163 AF156499 Graf and Ó Foighil (2000a,b) and Källersjö et al. (2005)

281 JN243891 Machordom et al. (2003), Whelan et al. (2011)

845 JN243886 FMNH 343927-343928, Whelan et al. (2011)

846 KP184896 FMNH 343931 ex ANSP 416349

847 KP184897 FMNH 343930 ex ANSP 419710

851 JN243890 FMNH 343929 ex ANSP 416338, Whelan et al. (2011)
852 KP184900 FMNH 343925
848 JN243889 ANSP 416341
849 KP184898 INHS 27889
850 KP184899
853 KP184901 UMMZ 304501
854 KP184902 UMMZ 304502
859 KP184907 FMNH 343926
860 KP184908 UMMZ 304507
855 KP184903 UMMZ 304503
856 KP184904 UMMZ 304504
857 KP184905 UMMZ 304505
858 KP184906 UMMZ 304506
861 KP184909 UMMZ 304508-304509
864 KP184912 UMMZ 304512
862 KP184910 UMMZ 304510
863 KP184911 UMMZ 304511
865 KP184913 UMMZ 304513
866 KP184914 UMMZ 304514
867 AF231746 UMMZ 304515, Bogan and Hoeh (2000)
868 KP184915 FMNH 337195
869 KP184916
870 KP184917 UMMZ 304516
871 KP184918 UMMZ 304517

alysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia:
), http://dx.doi.org/10.1016/j.ympev.2015.01.012
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Table 3
Primer sequences for PCR amplification and sequencing.

Gene Name Direction Sequence (50–30) References

COI LCO1490 Forward ggtcaacaaatcataaagatattgg Folmer et al. (1994)
HCO2198 Reverse taaacttcagggtgaccaaaaaatca
HCO2198-RH Reverse tcagggtgaccaaaaaatca Graf and Ó Foighil (2000a)
LCO22ME2 Forward ggtcaacaaaycataargatattgg Walker et al. (2006)
HCO700dy2 Reverse tcagggtgaccaaaaaayca

16S 16Sar-L-myt Forward cgactgtttaacaaaaacat Lydeard et al. (1996)
16Sbr-H-myt Reverse ccgttctgaactcagctcatgt

28S D23F Forward gagagttcaagagtacgtg Park and Ó Foighil (2000)
D4RB Reverse tgttagactccttggtccgtgt
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were performed using RAxML version 7.0.3 under the GTR + C
model, as recommended in the manual (Stamatakis, 2006). The
ML topology was estimated using 1000 separate inferences from
each partition and combination, and clade support was determined
from 2000 standard (i.e., not rapid) bootstrap replicates. MrBayes
version 3.2.1 (Ronquist et al., 2012) was used for BI analyses of
the combined partitions (4 runs, 4 chains each, 24 � 106 MCMC
generations). The substitution models applied to each partition
are listed in Table 4. Trees were sampled every 1000 generations
and the first 25% were discarded as burn-in. Sufficient mixing of
the chains was monitored using the average of the standard devi-
ations of the splits frequencies (<0.01), and stationarity was veri-
fied using TRACER version 1.5 (Rambaut and Drummond, 2009).

2.4. Comparison of alternative topologies

Conflicting clade analysis (CCA), following the methods of
Whelan et al. (2011), was used to summarize topological differ-
ences among the MP, ML, and BI results. CCA identifies those clades
that have high MP or ML bootstrap support (P70%) or BI posterior
probabilities (P95%) in the various analyses but that have low
support in the preferred topology. This practice eliminates the
need to illustrate multiple similar trees and focuses discussion on
conflicting clades that are well supported (ignoring those that are
only resolved with low support). The analysis was performed using
a custom perl script (available from the corresponding author).

Templeton, Winning Sites, Shimodaira–Hasegawa (S–H), and
Bayes Factor analyses were undertaken to statistically compare
optimal topologies against three different constraint topologies:
(1) Alathyria monophyletic, (2) Hyridella monophyletic, and (3)
Australasia monophyletic. Templeton and Winning Sites tests
(Felsenstein, 2003) were implemented in PAUP⁄ (Swofford, 2002).
The S–H tests (Shimodaira and Hasegawa, 1999) were done using
RAxML (Stamatakis, 2006), and Bayes Factors were calculated
and interpretted following the methods of Kass and Raftery
(1995) and Nylander et al. (2004).

2.5. Estimation of node ages

The topology and timing of freshwater mussel diversification
were simultaneously estimated by conducting a Bayesian uncorre-
lated relaxed clock analysis using BEAST version 1.7.5 (Drummond
314

315

316

317

Table 4
Substitution models applied for BI analyses.

DNA Sequence Partition Substitution Model

28S GTR + G
16S GTR + G
COI GTR + I + G
COI codon position 1 GTR + I + G
COI codon position 2 GTR
COI codon position 3 HKY + G

Please cite this article in press as: Graf, D.L., et al. Molecular phylogenetic an
Unionida) and the paraphyly of Australasian taxa. Mol. Phylogenet. Evol. (201
et al., 2012). For this analysis only the Combined (5 partition) data-
set described above was used, employing the same substitution
models used in the MrBayes analysis (Table 4) and a Birth–Death
speciation topology-prior. A complete summary of the priors used
for each parameter can be found in the Supplementary materials.
The phylogeny was calibrated at three nodes: the Hyridellini, the
core Velesunioninae (= Velesunio + Alathyria + Lortiella + Microdon-
tia), and Unionoidea (= Unio + Margaritifera). The minimum ages
of the first two nodes were both calibrated at 99.6 My based on
the fossil ages of Hyridella and Alathyria in the upper-most
Albian-Cenomanian (Hocknull, 2000; Walker and Geissman,
2009) and the minimum for the divergence of Unionoidea was
based on the oldest unionid in the Morrison Formation of western
North America. That fossil freshwater mussel assemblage is well
regarded as belonging to the stem or crown Unionidae (Watters,
2001). The oldest exemplar, Hadrodon jurassicus, was described
from the lower portion of the formation, spanning the Tidwell
and Salt Wash members (Yen, 1952; Evanoff et al., 1998).
Kowallis et al. (1998) provided dates bracketing these members
from 150 to 155 My, and we calibrated the minimum age of the
Unionidae at 152 My. Each calibration was modeled with the date
representing the youngest possible age and an exponential
distribution for the probability of an age older than the calibration
data. A lambda rate parameter of 30 was used for the 99.6 My
calibration dates resulting in a 95% credibility interval of 100–
210 My and a lambda of 20 for the 152 My calibration date (95%
CI 153–226 My). The MrBayes consensus tree inferred from the
Combined (5 partition) dataset was used to create a starting tree.
Branch lengths of this tree were converted to be roughly time-
calibrated via penalized likelihood using the chronos function in
the R package APE (Paradis et al., 2004). Three independent analy-
ses were performed for 24 � 106 generations each, sampling trees
every 1000 generations. TRACER (Rambaut and Drummond, 2009)
was used to identify plateaus in likelihood scores and the posterior
estimates of model parameters. All runs reached a stationary dis-
tribution prior to 2.4 million generations, and these were discarded
as burn-in.

AWTY (Nylander et al., 2008) was used to evaluate concordance
among the three independent runs, the cumulative posterior prob-
abilities of tree bipartitions were examined using the ‘‘cumulative’’
utility, and bipartition posterior probabilities between indepen-
dent analyses were compared with the ‘‘compare’’ utility. After
confirming concordance, the output of independent runs was com-
bined and the maximum clade credibility chronogram calculated
for the posterior sample (64,803 trees) using the LOGCOMBINER
and TREEANNOTATOR utilities included in BEAST (Drummond
et al., 2012).
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3. Results

The combined datasets (28S + 16S + COI) comprised a matrix of
30 individuals (21 species in 16 genera, a priori) by 1639 aligned
alysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia:
5), http://dx.doi.org/10.1016/j.ympev.2015.01.012
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nucleotides (nt). All terminals were represented by all genes, and
nearly all were non-chimeric (i.e., all three gene fragments were
obtained from the same individual). The following terminals were
chimeric: Neotrigonia margaritacea, Unio pictorum, Margaritifera
margaritifera, Chambardia wahlbergi (all outgroup), Microdontia
anodontaeformis, and Lortiella froggatti (both ingroup) (Table 2).
Preliminary analyses employing other alignment algorithms recov-
ered similar results to those presented below based on CLUSTAL X.
All novel sequences have been deposited in GenBank (KP184845-
KP184918).

An ILD test found no significant phylogenetic conflict among
28S, 16S and COI (p = 0.204). Table 5 reports the tree statistics from
the MP analysis of the combined dataset, showing the relative con-
tribution of each partition to the tree score. See the Supplementary
materials for more details of the MP, ML, and BI analysis results,
including topologies, branch support, and model parameters.
Fig. 1 depicts a time-calibrated phylogram recovered from the BI
Combined (5 partitions) analysis, including clade bootstraps and
posterior probabilities from the other analyses of the combined
matrix. The four ML and BI combined analyses (3 and 5 partition)
recovered the same topology, although they differed slightly in
their degree of support for some clades. The MP combined analysis
recovered a conflicting topology (see Supplementary materials).
The CCA analysis among all topologies is summarized in Table 6.

Only two conflict clades (8 & 9) in the CCA (Table 6) are relevant
to the results of this study. Clades 1–5 were resolved in the BI
Combined (5 partitions) tree shown in Fig. 1. These clades merely
indicate where alternative analyses found higher support for
clades than were recovered in the preferred topology. Clades 6–7
represent interspecific relationships supported by ML analyses of
single genes. Clades 8–9 indicate important conflicting clades that
were recovered with high support (i.e., bootstrap P70%) in only
the MP combined analysis. Clade 8, a sister relationship between
the Hyriidae and the (Unionidae + Margaritiferidae) clade, was
resolved in <50% of all of bootstrap or MCMC trees for all other
MP, ML, and BI analyses. Clade 9 supports the monophyly of the
Australian mussels (Velesunioninae + Hyridellini). It also had low
support in all other analyses.

BI and ML analyses resolved the Hyriidae as monophyletic and
sister to all other freshwater mussel families, although support for
the latter clade was ambiguous (Fig. 1). The two subfamilies,
Velesunioninae and Hyriinae were monophyletic. Support for the
Hyriinae was robust (except MP). Support for the core velesunio-
nine clade (Velesunio + Alathyria + Lortiella + Microdontia) was also
robust, but the placement of Westralunio as sister to the core clade
was generally weak. Both 16S and COI individually resolved Westr-
alunio with the Hyriinae (not shown, see Supplementary material).
A clade of the genera representing the three South American tribes
was well supported. Only two genera, (Alathyria and Hyridella)
included multiple congeners, and neither was recovered as
monophyletic.

Statistical analyses comparing the optimal MP, ML, and BI trees
to topologies constraining the monophyly of Alathyria, Hyridella
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Table 5
Tree statistics for MP analysis of the combined matrix. Data for the contributions of
the individual partitions of the MP are also provided.

Combined 28S 16S COI

Taxa 30 30 30 30
Characters 1639 481 518 640
Informative characters 641 156 212 273
# of trees 1
Length 2637 481 966 1190
RC 0.3282 0.5797 0.3255 0.2518

RC = Rescaled Consistency Index.

Please cite this article in press as: Graf, D.L., et al. Molecular phylogenetic an
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and Australian mussels are summarized in Tables 7 and 8. MP
Templeton and Winning Sites tests (Table 7), ML S–H test, and
BI Bayes Factor analysis (Table 8) robustly rejected Alathyria
monophyly. Both BI and ML also rejected Hyridella monophyly,
but MP was ambiguous. The best MP topology was identical to
the Australasian monophyly constraint topology (Table 6: clade
9). However, that MP topology did not differ significantly from
the best BI/ML topology (Table 7). Neither the S–H test nor Bayes
Factor analysis found a significant topological difference between
the best topology (Fig. 1) and the Australia monophyly constraint
topology (Table 8).

Age estimates for key clades are reported in Table 9. The mean
age derived from Bayesian MCMC analysis for the Hyriidae was
194 My, placing its origin in the Early Jurassic. Both the Velesuni-
oninae (mean age = 172 My) and Hyriinae (167 My) arose in the
Middle Jurassic (Walker and Geissman, 2009).

4. Discussion

Although many studies have touched on the topic of Australian
hyriid phylogeny (listed above), ours has the broadest taxon sam-
pling and deepest character sampling to date. Our likelihood-based
analyses recovered good support for the monophyly of the
Hyriidae, Velesunioninae, Hyriinae (i.e., the paraphyly of the
Australasian freshwater mussels), and Hyridellini (Table 1, Fig. 1).
Though the paraphyly of the Australasian freshwater mussels
was not resolved by maximum parsimony, this is hardly a cause
for concern. The shortcomings of parsimony in molecular analyses
with deep divergence situations (i.e., long branches) are well
known (Felsenstein, 1978, 1981). While likelihood-based methods
are not a panacea, the topology in Fig. 1 and our clade age esti-
mates in Table 9 agree well with the morphological, biogeograph-
ical, and fossil evidence. Moreover, our results are in accordance
with the modern classification of the Hyriidae and freshwater
mussels generally.

4.1. Monophyly & sister-group of the Hyriidae

The Hyriidae was supported as monophyletic, confirming the
results of nearly all previous analyses. The aforementioned phylo-
genetic studies had recovered the Hyriidae as either (1) sister to
the other freshwater mussel families (Bogan and Hoeh, 2000;
Hoeh et al., 2001, 2002; Walker et al., 2006), or (2) sister to the
lasidium-bearing mussels (Graf, 2000; Roe and Hoeh, 2003; Graf
and Cummings, 2006). Most of our analyses resolved the former
hypothesis (Fig. 1), although the Bayesian inference (BI) combined
(5 partition: 28S + 16S + 3 COI codon positions) analysis was the
only one to provide strong support. The maximum parsimony
(MP) combined analysis topology provided a well-supported
(>70% bootstrap) alternative: (Hyriidae + Unionidae + Margaritife-
ridae) sister to (Etheriidae + Iridinidae + Mycetopodidae) (tree not
shown, see Supplementary materials) (Table 6: clade 8). The MP
result is consistent with the traditional classification proposed by
Parodiz and Bonetto (1963), with the Hyriidae grouped with other
mussels with glochidium-type larvae, and the mussels with lasid-
ium-type larvae in a separate clade. Our preferred topology (Fig. 1)
supports the hypothesis that possession of glochidium-type larvae
(as observed in the Hyriidae, Unionidae, and Margaritiferidae) was
the ancestral condition among freshwater mussels, and the lasidi-
um-type larvae were derived from glochidia on the branch leading
to the Etheriidae, Iridinidae, and Mycetopodidae (Graf and
Cummings, 2006). Our preferred topology also supports classifying
the Hyriidae in their own superfamily, Hyrioidea, distinct from the
Unionoidea and Etherioidea (Hoeh et al., 2009; Bieler et al., 2010;
Carter et al., 2011). The family (and superfamily) is readily
diagnosed by the presence of hooked-type glochidia (lacking
alysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia:
), http://dx.doi.org/10.1016/j.ympev.2015.01.012
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Fig. 1. BI/ML topology with branch lengths determined by the molecular clock. All BI and ML combined analyses (3 and 5 partition) returned the same topology. Node ages
are the mean value returned from Bayesian molecular clock analysis. An asterisk (⁄) indicates nodes with P98% bootstrap or posterior probability support in all analyses of
the combined matrix. For other clades, branch support values above the branches are posterior probability percentages from BEAST and the two combined BI analyses (3 and
5 partition). Bootstrap percentages are given below the branches for the two combined ML analyses (3 and 5 partition) and MP.

Table 6
Conflict Clade Analysis (CCA) relative to the preferred topology (BI Combined, 5 partitions). Clades listed are those with low support in the BI Combined (5 partition) (<95%;
underlined) but high support in the other analyses (BI posterior probability P95%, MP/ML bootstrap P70%; bold). � indicates clades resolved in Fig. 1.

# Clade partitions BI MP ML

Combo Combo Combo 28S 16S COI Combo Combo 28S 16S COI COI

5 3 1 1 1 1 5 3 1 1 3 1

1� (Anodontites + Etheria) 87 73 52 38 28 35 75 74 55 18 76 67

2� HYRIDELLINI 93 98 47 46 57 9 69 71 54 45 26 27

3� VELESUNIONINAE 85 84 78 39 6 19 49 60 48 5 0 0

4� (Microdontia + Lortiella) 90 88 60 68 19 48 67 72 73 25 23 40

5� (‘‘Alathyria’’ profuga + Velesunio ambiguus) 51 60 80 0 92 36 62 51 0 71 22 12

6 (Chambardia + Anodontites) 0 11 6 0 60 14 13 12 0 77 10 18

7 (Alathyria jacksoni + ‘‘A.’’ profuga) 47 39 20 0 7 62 38 49 48 23 76 87

8 (UNIONOIDEA + HYRIIDAE) 0 17 75 45 38 38 15 15 0 21 40 30

9 (VELESUNIONINAE + HYRIDELLINI) 0 0 72 16 0 38 13 12 0 7 14 15

HYRIDELLINI = (Cucumerunio + Hyridella); VELESUNIONINAE = (Alathyria + Lortiella + Microdontia + Velesunio + Westralunio); HYRIIDAE = (HYRIDELLINI + VELESUNIONIN-
I + Diplodon + Castalia + Triplodon); UNIONOIDEA = (Unio + Margaritifera).

Table 7
Statistical comparison of MP constraint topologies. The MP tree is compared to the trees recovered from three different constraint topologies: Alathyria monophyletic, Hyridella
monophyletic, and the preferred BI/ML topology (Fig. 1). The BEST MP tree resolves the Australasian taxa as monophyletic. ⁄ indicates statistically significant p-values (a = 0.05).

Tree Length Length difference Templeton (p-value) Winning sites (p-value)

BEST 2637 – – –
Alathyria-1 2687 50 0.0001⁄ 0.0001⁄

Alathyria-2 2687 50 <0.0001⁄ <0.0001⁄

Australasia 2637 0 – –
Hyridella-1 2652 15 0.12 0.1334
Hyridella-2 2652 15 0.0287⁄ 0.0411⁄

BI/ML (Fig. 1) 2652 15 0.1654 0.211

6 D.L. Graf et al. / Molecular Phylogenetics and Evolution xxx (2015) xxx–xxx

YMPEV 5110 No. of Pages 9, Model 5G

9 February 2015
marginal spines) brooded in a marsupium composed of the
females’ inner demibranchs, as well as the presence of a complete
excurrent siphon. The incurrent aperture generally lacks ventral
mantle fusion (Graf and Cummings, 2006).
Please cite this article in press as: Graf, D.L., et al. Molecular phylogenetic an
Unionida) and the paraphyly of Australasian taxa. Mol. Phylogenet. Evol. (201
4.2. Hyriid subfamilies, tribes & genera

Our results further support the division of the Hyriidae into two
subfamilies: Velesunioninae and Hyriinae (Fig. 1, Table 1). The
alysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia:
5), http://dx.doi.org/10.1016/j.ympev.2015.01.012
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Table 8
Statistical comparison of BI/ML constraint topologies. The BI/ML topology (BEST) is compared with three constraint topologies: Alathyria monophyletic, Australasia monophyletic,
and Hyridella monophyletic. ⁄ indicates statistically significant p-values (a = 0.05).

Tree �lnL �lnL S–H Arithmetic �lnL Harmonic �lnL
Difference (p-value) Mean �lnL Difference Mean �lnL Difference 2 ln (B10) Decision

BEST �12503.59289 – – �12512.83 – �12556.09
Alathyria �12631.44270 �127.84981 <0.05⁄ �12640.52 �127.69 �12686.04 �129.95 �259.89 Reject
Australasia �12508.77216 �5.17927 >0.05 �12517.10 �4.27 �12560.81 �4.72 �9.43 Reject?
Hyridella �12535.14477 �31.55188 <0.05⁄ �12543.22 �30.39 �12587.83 �31.74 �63.47 Reject

Table 9
Estimation of clade ages. Three minimum clade ages were used to calibrate ages (see text for explanation). Ages are given in millions of years before present.

Clades Calibration Mean Median 95% range

Root – 403 389 241–589
UNIONIDA – 315 308 212–424
UNIONOIDEA 152 177 171 152–222
(Anodontites + Etheria) – 136 131 73–209
HYRIIDAE – 194 190 143–251
VELESUNIONINAE – 172 168 127–223
(Alathyria + Lortiella + Microdontia + Velesunio) 99.6 110 107 99.6–129
HYRIINAE – 167 163 119–219
HYRIDELLINI 99.6 119 115 99.6–150
(Castalia + Diplodon + Triplodon) – 115 113 72–164
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Velesunioninae is strictly Australasian whereas the Hyriinae has a
disjunct distribution, occurring in both Australasia and South
America. The paraphyly of the Australasian hyriids has been previ-
ously proposed (Graf and Ó Foighil, 2000b; Graf and Cummings,
2006) and has been generally accepted despite insufficient taxon
and character sampling (Bieler et al., 2010; Carter et al., 2011;
Walker et al., 2014). The phylogeny in Fig. 1 includes representa-
tives of all but two Australasian freshwater mussel genera (i.e.,
Virgus and Echyridella, both traditionally Hyriinae). The two sub-
families are well supported by our likelihood-based analyses
except for the placement of Westralunio as sister to the core
Velesunioninae (= Velesunio + Alathyria + Lortiella + Microdontia).
No well-supported alternative position for that genus was recov-
ered by any of our analyses (Table 6), and the other core velesunio-
nines are well supported as monophyletic. Only the MP combined
analysis supported a clade composed of Australasian mussels sister
to those from South America (tree not shown, see Supplementary
materials) (Table 6: clade 9). None of our constraint analyses were
able to find significant support to distinguish Australasian mono-
phyly from paraphyly (Tables 7 and 8). Nevertheless, likelihood-
based analyses of the combined dataset consistently returned high
bootstrap and posterior probabilities supporting the monophyly
of the Hyriinae, a clade composed of both Australasian and
Neotropical mussels (Fig. 1). The two subfamilies can be diagnosed
by the degree of development of umbo sculpture as well as larval
characteristics (Walker et al., 2014). Species of the Hyriinae tend
to have well-developed ‘‘radial’’ or V-shaped umbo sculpture,
whereas members of the Velesunioninae generally have weakly
developed or no umbo sculpture (Graf and Cummings, 2006;
Zieritz et al., 2013). These shell characters are useful for distin-
guishing fossil as well as extant taxa (Hocknull, 2000).

The subfamily Hyriinae is split between two clades in our anal-
yses (Fig. 1). One is equivalent to the Australian tribe Hyridellini,
and the other clade is comprised of the three Neotropical tribes:
Hyriini, Castaliini, and Rhipidodontini. The latter clade lacks formal
nomenclature. The genus Echyridella from New Zealand was not
available for inclusion, but in previous studies, it has been recov-
ered in various weakly supported positions relative to these two
clades (Graf and Cummings, 2006; Walker et al., 2006; Marshall
et al., 2014). If Echyridella is found to be sister to either
(Hyriini + Castaliini + Rhipidodontini) or (Hyridellini, ((Hyriini +
Please cite this article in press as: Graf, D.L., et al. Molecular phylogenetic an
Unionida) and the paraphyly of Australasian taxa. Mol. Phylogenet. Evol. (2015
Castaliini + Rhipidodontini)), then it may represent a 5th tribe
within the Hyriinae. The clades within the Hyriinae are best diag-
nosed by molecular characters and geography. McMichael and
Hiscock (1958) distinguished Australian hyriines from Neotropical
species by the presence of a perforated septum dividing the infra-
branchial from the suprabranchial chambers of the mantle cavity,
but this has been questioned by Walker et al. (2014).

Only two genera in our analyses, Hyridella and Alathyria, were
represented by multiple species (Table 2), and neither was recov-
ered as monophyletic (Fig. 1). Hyridella (Hyriinae: Hyridellini)
was represented by three species that were resolved in two well
supported clades: (H. depressa + H. drapeta) and (H. australis +
Cucumerunio novaehollandiae). Alathyria (Velesunioninae) was also
recovered as paraphyletic, with none of the three included species
forming an Alathyria-exclusive clade. The problem of non-mono-
phyly of the Australian freshwater mussel genera has been
reported previously (Baker et al., 2003, 2004). However, sorting
out genus-level nomenclature is beyond the scope of this paper.
It should be sufficient to point out that the names Hyridella
Swainson, 1840 and Alathyria Iredale, 1934 will remain with their
respective type species, H. australis (Lamarck, 1819) and A. jacksoni
Iredale, 1934, and that other genus-group level names are already
available for the other lineages (McMichael and Hiscock, 1958).

4.3. Origin & diversification of the Hyriidae

The clade ages of the Australian and South American hyriid lin-
eages as well as the dispersal capabilities of freshwater mussels are
entirely consistent with Mesozoic Gondwanan origins of the major
ingroup clades depicted in Fig. 1: Hyriidae, Velesunioninae, Hyrii-
nae, Hyridellini, and the clade of Neotropical tribes (Table 1). With
only the spotty fossil record available to estimate clade ages,
dispersalist hypotheses were considered untestable under the par-
adigm of the Cladistic Revolution (Briggs, 2003; de Queiroz, 2005;
McGlone, 2005). Nevertheless, over the last 10–15 years, molecular
clock analyses have repeatedly discovered that the geographical
distributions of a variety of traditional Gondwanan taxa are better
explained by subsequent transoceanic dispersal than by ancient
vicariance – e.g., southern beeches (Knapp et al., 2005), ratite birds
(Haddrath and Baker, 2001), and galaxiid fishes (Burridge et al.,
2012). This is not the case with the disjunct distribution of the
alysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia:
), http://dx.doi.org/10.1016/j.ympev.2015.01.012
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Australasian and South American hyriids. Even our minimum clade
age calibrations for the core Velesunioninae and Hyridellini from
the earliest Late Cretaceous (99.6 Mya) (Hocknull, 2000) substan-
tially pre-date the latest hypothesized continental connection
between South America and Australia/Antarctica during the
Eocene (52 Mya) (Sanmartín and Ronquist, 2004). The mean
molecular age estimates for the origins of core velesunionines
and Hyridellini as well as the Neotropical clade are Early
Cretaceous (110–119 Mya), and the mean age estimates for the
Velesunioninae (including Westralunio) and Hyriinae fall in the lat-
est Middle Jurassic (167–172 Mya) (Table 9). This suggests that
vicariance resulting from the disintegration of Gondwana was
not the driver of cladogenesis among the major hyriid lineages.
Rather, these clades (or their stem groups) had diversified before
to the breakup of the southern continents.

Although the major hyriid clades originated prior to the isola-
tion of South America from Australia by marine dispersal barriers,
we hypothesize that terrestrial barriers isolated these clades even
while these continental elements of Gondwana remained intact.
That is, it was the evolution of Mesozoic river basins on Gondwana
that precipitated cladogenesis in the Hyriidae, localizing the
Velesunioninae, Hyridellini and Neotropical tribes to specific
catchments, and subsequent tectonic rifting reinforced this isola-
tion. Alternatively these clades were widespread on Gondwana,
and the distributions observed today represent relictual lineages
and the products of differential extinction. The former hypothesis
is supported by the Mesozoic fossil record of the Hyriidae, which
is largely (see below) restricted to South America and Australasia,
and the fossil taxa in those areas are assigned to their respective
modern taxa (Martínez and Figueiras, 1991; Hocknull, 2000;
Perea et al., 2009; Thompson and Stilwell, 2010; Parras and
Griffin, 2013).

We estimate an Early Jurassic (mean age = 194 My) origin of the
crown-group Hyriidae (Table 9). That is younger than the Late Tri-
assic (Carnian, 217–229 Mya) alleged hyriid records from Austral-
asia (McMichael, 1957; Hocknull, 2000) and North America
(Wanner, 1921; Good, 1998). Those fossils are not assigned to mod-
ern genera (e.g., Antediplodon, Prohyria, Megalovirgus, Mesohyridel-
la), and only the Australasian taxa have been assigned to the
modern family-group level taxa described above. Skawina and
Dzik (2011) regarded those pre-Jurassic fossils as the stem-groups
of the modern unionoid clades, and that hypothesis is consistent
with our results. The relationships of the North American Triassic
fossils to the extinct Trigonioidoidea remains to be determined
(Gray, 1988). We hypothesize that the most recent common ances-
tor of the modern Hyriidae arose on post-Triassic Gondwana, and
the descendants of that freshwater mussel species gave rise to the
ancestors of the Velesunioninae, Hyridellini and the (Hyriini + Cas-
taliini + Rhipidodontini) clade before South America, Antarctica,
and Australia were isolated by marine barriers in the Tertiary.

4.4. Areas for future study

Our work provides a sound basis for continued phylogenetic
studies of the global Hyriidae. The phylogenetic positions of two
additional Australasian genera, Virgus from New Guinea and
Echyridella from New Zealand, could be added in future studies
to test their positions relative to the well supported clades we have
recovered. Both genera have traditionally been placed in the Hyri-
dellini, although work to-date has demonstrated that Echyridella,
geographically isolated from the other Australasian clades by
80 Mya (Sanmartín and Ronquist, 2004), may represent a distinct
lineage (Graf and Cummings, 2006; Walker et al., 2006; Marshall
et al., 2014). Moreover, the monophyly of the Neotropical tribes
remains to be examined. We hope that this research stimulates
further interest in this ancient family of freshwater mussels.
Please cite this article in press as: Graf, D.L., et al. Molecular phylogenetic an
Unionida) and the paraphyly of Australasian taxa. Mol. Phylogenet. Evol. (201
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