62 research outputs found

    Educational change in Scotland: Policy, context and biography

    Get PDF
    The poor success rate of policy for curriculum change has been widely noted in the educational change literature. Part of the problem lies in the complexity of schools, as policymakers have proven unable to micromanage the multifarious range of factors that impact upon the implementation of policy. This paper draws upon empirical data from a local authority-led initiative to implement Scotland’s new national curriculum. It offers a set of conceptual tools derived from critical realism (particularly the work of Margaret Archer), which offer significant potential in allowing us to develop greater understanding of the complexities of educational change. Archer’s social theory developed as a means of explaining change and continuity in social settings. As schools and other educational institutions are complex social organisations, critical realism offers us epistemological tools for tracking the ebbs and flows of change cycles over time, presenting the means for mapping the multifarious networks and assemblages that form their basis

    Whatever happened to curriculum theory? Critical realism and curriculum change

    Get PDF
    In the face of what has been characterised as a ‘crisis’ in curriculum – an apparent decline of some aspects of curriculum studies combined with the emergence of new types of national curriculum which downgrade knowledge – some writers have been arguing for the use of realist theory to address these issues. This paper offers a contribution to this debate, drawing upon critical realism, and especially upon the social theory of Margaret Archer. The paper first outlines the supposed crisis in curriculum, before providing an overview of some of the key tenets of critical realism. The paper concludes by speculating on how critical realism may offer new ways of thinking to inform policy and practice in a key curricular problematic. This is the issue of curriculum change

    The Boundary-spanning Role of Democratic Learning Communities: Implementing the IDEALS

    Get PDF
    This multi-case study investigates characteristics and practices in schools that expand the traditional boundaries of school leadership and transform schools into democratic learning communities based on the level of implementation of the IDEALS framework. This investigation serves as a modus to illuminate democratic processes that change schools and address the needs of the students, not the needs of the adults in the system. A sample of five purposefully selected high schools, from the Midwest USA, was utilized. The schools serve Grade 9—12 students, but vary in size, residential area and socioeconomic status of the students. This study illuminates some of the challenges and strategies that facilitate or impede the process of creating more democratic schools that expand the boundaries of inquiry and discourse to include a broader range of community stakeholders and that respect and embrace issues of equity.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond

    Get PDF
    The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device’s unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power ‘starvation’ reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in–out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added

    Response of Northern Bobwhite Movements to Management-Driven Disturbance in a Shrub-Dominated Ecosystem

    No full text
    Despite inhabiting fire-adapted grasslands and shrublands across much of their continental distribution, northern bobwhite (Colinus virginianus, hereafter bobwhite) behavior relative to disturbance (e.g., fire) is poorly understood, especially in the western fringe of their distribution. We assessed bobwhite movement and space use following dormant season burning (January-March 2013-2014) in a sand shinnery oak (Quercus havardii, hereafter shinnery oak) plant community. We captured and radio-marked bobwhites (n=369) and monitored them via radiotelemetry across burn treatments (averaging 254 ha) ranging from 0 to 12, 13 to 24, 25 to 36, and >36 months post fire (hereafter, time since fire [TSF]) at the Packsaddle Wildlife Management Area in western Oklahoma, United States. Mean covey home range size was 76.6 ha ± 5.9 [SE] (range; 12-270 ha) (n = 61 coveys), which is substantially larger than covey home ranges reported for other regions. Prescribed fire affected space use of coveys (F4, 54 = 2.95, P 36 TSF (78.9 ha [± 6.54]). Generalized linear mixed models demonstrated that neither spring dispersal (movements or area traversed) were correlated with TSF, age, or sex (n = 114), further demonstrating aminimal effect of prescribed fire; however, dispersal areas were greater in 2013 than in 2014 (P < 0.05). Our research shows that prescribed fire applied at a landscape scale had limited effects on short-term bobwhite movement and space use. These findings also suggest that in shinnery oak vegetation communities land managers can use prescribed fire across large spatial extents without substantially altering the space use or movement of bobwhites. © 2016 The Society for Range Management.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information

    Tradition and transition: Parasitic zoonoses of people and animals in Alaska, northern Canada, and Greenland

    No full text
    Zoonotic parasites are important causes of endemic and emerging human disease in northern North America and Greenland (the North), where prevalence of some parasites is higher than in the general North American population. The North today is in transition, facing increased resource extraction, globalisation of trade and travel, and rapid and accelerating environmental change. This comprehensive review addresses the diversity, distribution, ecology, epidemiology, and significance of nine zoonotic parasites in animal and human populations in the North. Based on a qualitative risk assessment with criteria heavily weighted for human health, these zoonotic parasites are ranked, in the order of decreasing importance, as follows: Echinococcus multilocularis, Toxoplasma gondii, Trichinella and Giardia, Echinococcus granulosus/canadensis and Cryptosporidium, Toxocara, anisakid nematodes, and diphyllobothriid cestodes. Recent and future trends in the importance of these parasites for human health in the North are explored. For example, the incidence of human exposure to endemic helminth zoonoses (e.g. Diphyllobothrium, Trichinella, and Echinococcus) appears to be declining, while water-borne protozoans such as Giardia, Cryptosporidium, and Toxoplasma may be emerging causes of human disease in a warming North. Parasites that undergo temperature-dependent development in the environment (such as Toxoplasma, ascarid and anisakid nematodes, and diphyllobothriid cestodes) will likely undergo accelerated development in endemic areas and temperate-adapted strains/species will move north, resulting in faunal shifts. Food-borne pathogens (e.g. Trichinella, Toxoplasma, anisakid nematodes, and diphyllobothriid cestodes) may be increasingly important as animal products are exported from the North and tourists, workers, and domestic animals enter the North. Finally, key needs are identified to better assess and mitigate risks associated with zoonotic parasites, including enhanced surveillance in animals and people, detection methods, and delivery and evaluation of veterinary and public health services

    Polarization calibration of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO)

    Get PDF
    As part of the overall ground-based calibration of the Helioseismic and Magnetic Imager (HMI) instrument an extensive set of polarimetric calibrations were performed. This paper describes the polarimetric design of the instrument, the test setup, the polarimetric model, the tests performed, and some results. It is demonstrated that HMI achieves an accuracy of 1% or better on the crosstalks between Q, U, and V and that our model can reproduce the intensities in our calibration sequences to about 0.4%. The amount of depolarization is negligible when the instrument is operated as intended which, combined with the flexibility of the polarimeter design, means that the polarimetric efficiency is excellent
    corecore