25 research outputs found
The structural basis of bacterial manganese import
Metal ions are essential for all forms of life. In prokaryotes, ATP-binding cassette (ABC) permeases serve as the primary import pathway for many micronutrients including the first-row transition metal manganese. However, the structural features of ionic metal transporting ABC permeases have remained undefined. Here, we present the crystal structure of the manganese transporter PsaBC from Streptococcus pneumoniae in an open-inward conformation. The type II transporter has a tightly closed transmembrane channel due to "extracellular gating" residues that prevent water permeation or ion reflux. Below these residues, the channel contains a hitherto unreported metal coordination site, which is essential for manganese translocation. Mutagenesis of the extracellular gate perturbs manganese uptake, while coordination site mutagenesis abolishes import. These structural features are highly conserved in metal-specific ABC transporters and are represented throughout the kingdoms of life. Collectively, our results define the structure of PsaBC and reveal the features required for divalent cation transport.Stephanie L. Neville, Jennie Sjöhamn, Jacinta A. Watts, Hugo MacDermott-Opeskin, Stephen J. Fairweather, Katherine Ganio, Alex Carey Hulyer, Aaron P. McGrath, Andrew J. Hayes, Tess R. Malcolm, Mark R. Davies, Norimichi Nomura, So Iwata, Megan L. O’Mara, Megan J. Maher, Christopher A. McDevit
Identification of nine new susceptibility loci for endometrial cancer
Endometrial cancer is the most commonly diagnosed cancer of the female reproductive tract in developed countries. Through genome-wide association studies (GWAS), we have previously identified eight risk loci for endometrial cancer. Here, we present an expanded meta-analysis of 12,906 endometrial cancer cases and 108,979 controls (including new genotype data for 5624 cases) and identify nine novel genome-wide significant loci, including a locus on 12q24.12 previously identified by meta-GWAS of endometrial and colorectal cancer. At five loci, expression quantitative trait locus (eQTL) analyses identify candidate causal genes; risk alleles at two of these loci associate with decreased expression of genes, which encode negative regulators of oncogenic signal transduction proteins (SH2B3 (12q24.12) and NF1 (17q11.2)). In summary, this study has doubled the number of known endometrial cancer risk loci and revealed candidate causal genes for future study
Single nucleotide polymorphisms in the KLK locus and their implication in various diseases
Intraluminal Volume Dose Alteplase for the Clearance of Occluded Peripherally Inserted Central Catheter Lines at a Long-Term Acute Care Hospital: Efficacy and Economic Impact
913 USING SHORT-TERM MONOTHERAPY AND IN VITRO DATA TO MAKE EARLY PREDICTIONS OF CLINICAL HCV RESPONSE: EXAMPLES FROM MK-5172, A SECOND GENERATION HCV NS3/4A PROTEASE INHIBITOR
Megapixel CMOS image sensor fabricated in three-dimensional integrated circuit technology
Antiviral Activity, Safety, and Tolerability of Multiple Ascending Doses of Elbasvir or Grazoprevir in Participants Infected With Hepatitis C Virus Genotype-1 or -3
Purpose: Elbasvir (MK-8742) and grazoprevir (MK-5172; Merck & Co, Inc, Kenilworth, New Jersey) are hepatitis C virus (HCV)-specific inhibitors of the nonstructural protein 5A phosphoprotein and the nonstructural protein 3/4A protease, respectively. The aims of these studies were to evaluate the antiviral activity and safety of different doses of elbasvir or grazoprevir each administered as monotherapy to participants infected with either HCV genotype (GT) 1 or GT3. Methods: These 2 double-blind, randomized, placebo-controlled, sequential-panel, multiple ascending dose studies were conducted to assess the safety and pharmacodynamics of 5 days of once-daily elbasvir or 7 days of once-daily grazoprevir in adult male participants chronically infected with either HCV GT1 or GT3. Findings: Oral administration of elbasvir or grazoprevir once daily exhibited potent antiviral activity in participants with chronic GT1 or GT3 HCV infections. HCV RNA levels declined rapidly (within 1 day for elbasvir and 2 days for grazoprevir). At 50 mg of elbasvir once daily, the mean maximum reductions in HCV RNA from baseline were 5.21, 4.17, and 3.12 log10 IU/mL for GT1b-, GT1a-, and GT3-infected participants, respectively. At 100 mg of grazoprevir once daily, the mean maximum reductions in HCV RNA from baseline were 4.74 and 2.64 log10 IU/mL for GT1- and GT3-infected participants. Implications: The results in the elbasvir monotherapy study showed that 10 to 50 mg of elbasvir was associated with a rapid decline in HCV viral load; the results in the grazoprevir monotherapy study suggest that doses of 50 mg of grazoprevir and higher are on the maximum response plateau of the dose–response curve for GT1-infected participants. The results of these proof-of-concept studies provided preliminary data for the selection of the dosages of elbasvir and grazoprevir to test in Phase II and III clinical studies. ClinicalTrials.gov identifiers: NCT00998985 (Protocol 5172-004) and NCT01532973 (Protocol 8742-002). © 2018 Elsevier HS Journals, Inc
