303 research outputs found
Epistemic Dependence and Collective Scientific Knowledge
I argue that scientific knowledge is collective knowledge, in a sense to be specified and defended. I first consider some existing proposals for construing collective knowledge and argue that they are unsatisfactory, at least for scientific knowledge as we encounter it in actual scientific practice. Then I introduce an alternative conception of collective knowledge, on which knowledge is collective if there is a strong form of mutual epistemic dependence among scientists, which makes it so that satisfaction of the justification condition on knowledge ineliminably requires a collective. Next, I show how features of contemporary science support the conclusion that scientific knowledge is collective knowledge in this sense. Finally, I consider implications of my proposal and defend it against objections. © 2013 Springer Science+Business Media Dordrecht
Monitoring of a methane-seeping pockmark by cabled benthic observatory (Patras Gulf, Greece)
A new seafloor observatory, the gas monitoring
module (GMM), has been developed for continuous and
long-term measurements of methane and hydrogen sulphide
concentrations in seawater, integrated with temperature (T),
pressure (P) and conductivity data at the seafloor. GMM
was deployed in April 2004 within an active gas-bearing
pockmark in the Gulf of Patras (Greece), at a water depth of
42 m. Through a submarine cable linked to an onshore
station, it was possible to remotely check, via direct phone
connection, GMM functioning and to receive data in nearreal
time. Recordings were carried out in two consecutive
campaigns over the periods AprilâJuly 2004, and September
2004âJanuary 2005, amounting to a combined dataset
of ca. 6.5 months. This represents the first long-term
monitoring ever done on gas leakage from pockmarks by
means of CH4+H2S+T+P sensors. The results show
frequent T and P drops associated with gas peaks, more
than 60 events in 6.5 months, likely due to intermittent,
pulsation-like seepage. Decreases in temperature in the
order of 0.1â1°C (up to 1.7°C) below an ambient T of ca.
17°C (annual average) were associated with short-lived
pulses (10â60 min) of increased CH4+H2S concentrations.
This seepage âpulsationâ can either be an active process
driven by pressure build-up in the pockmark sediments, or a
passive fluid release due to hydrostatic pressure drops
induced by bottom currents cascading into the pockmark
depression. Redundancy and comparison of data from
different sensors were fundamental to interpret subtle proxy
signals of temperature and pressure which would not be
understood using only one sensor.Published297-302JCR Journalreserve
Ampicillin-Improved Glucose Tolerance in Diet-Induced Obese C57BL/6NTac Mice Is Age Dependent
Ampicillin has been shown to improve glucose tolerance in mice. We hypothesized that this effect is present only if treatment is initiated prior to weaning and that it disappears when treatment is terminated. High-fat fed C57BL/6NTac mice were divided into groups that received Ampicillin at different ages or not at all. We found that both diet and Ampicillin significantly changed the gut microbiota composition in the animals. Furthermore, there was a significant improvement in glucose tolerance in Ampicillin-treated, five-week-old mice compared to nontreated mice in the control group. At study termination, expressions of mRNA coding for tumor necrosis factor, serum amyloid A, and lactase were upregulated, while the expression of tumor necrosis factor (ligand) superfamily member 15 was downregulated in the ileum of Ampicillin-treated mice. Higher dendritic cell percentages were found systemically in high-fat diet mice, and a lower tolerogenic dendritic cell percentage was found both in relation to high-fat diet and late Ampicillin treatment. The results support our hypothesis that a âwindowâ exists early in life in which an alteration of the gut microbiota affects glucose tolerance as well as development of gut immunity and that this window may disappear after weaning
Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope
The ANTARES collaboration has performed a series of {\em in situ}
measurements to study the background light for a planned undersea neutrino
telescope. Such background can be caused by K decays or by biological
activity. We report on measurements at two sites in the Mediterranean Sea at
depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were
used to measure single counting rates and coincidence rates for pairs of tubes
at various distances. The background rate is seen to consist of three
components: a constant rate due to K decays, a continuum rate that
varies on a time scale of several hours simultaneously over distances up to at
least 40~m, and random bursts a few seconds long that are only correlated in
time over distances of the order of a meter. A trigger requiring coincidences
between nearby photomultiplier tubes should reduce the trigger rate for a
neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle
Physic
H-NMR metabolic profiling of wines from three cultivars, three soil types and two contrasting vintages
Differences in wine flavour proceed primarily from grape quality. Environmental factors (climate, soil), cultivars and training systems modify many grape and wine quality traits. Metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectra has been proved to be useful to study multifactorial effects of the vine environment on intricate grape quality traits. The capacity of this method to discriminate the environmental effects on wine has to be demonstrate
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It
consists of a three dimensional array of photomultiplier tubes that can detect
the Cherenkov light induced by charged particles produced in the interactions
of neutrinos with the surrounding medium. High angular resolution can be
achieved, in particular when a muon is produced, provided that the Cherenkov
photons are detected with sufficient timing precision. Considerations of the
intrinsic time uncertainties stemming from the transit time spread in the
photomultiplier tubes and the mechanism of transmission of light in sea water
lead to the conclusion that a relative time accuracy of the order of 0.5 ns is
desirable. Accordingly, different time calibration systems have been developed
for the ANTARES telescope. In this article, a system based on Optical Beacons,
a set of external and well-controlled pulsed light sources located throughout
the detector, is described. This calibration system takes into account the
optical properties of sea water, which is used as the detection volume of the
ANTARES telescope. The design, tests, construction and first results of the two
types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.
Single-frame multiparameter platforms for seafloor geophysical and environmental observations: projects and missons from GEOSTAR to ORION
The paper presents an overview of recent seafloor long-term single-frame multiparameter platform developed in the framework of the European Commission and Italian projects starting from the GEOSTAR prototype. The main features of the different systems are described as well as the sea missions that led to their validation. The ORION seafloor observatory network recently developed, based on the GEOSTAR-type platforms and engaged in a deep-sea mission at 3300 m w.d. in the Mediterranean Sea, is also describe
- âŠ