569 research outputs found

    Mutual optical injection in coupled DBR laser pairs

    Get PDF
    We report an experimental study of nonlinear effects, characteristic of mutual optical coupling, in an ultra-short coupling regime observed in a distributed Bragg reflector laser pair fabricated on the same chip. Optical feedback is amplified via a double pass through a common onchip optical amplifier, which introduces further nonlinear phenomena. Optical coupling has been introduced via back reflection from a cleaveended fibre. The coupling may be varied in strength by varying the distance of the fibre from the output of the chip, without significantly affecting the coupling time. © 2008 Optical. Society of America

    A New Simulated Annealing Algorithm for the Multiple Sequence Alignment Problem: The approach of Polymers in a Random Media

    Full text link
    We proposed a probabilistic algorithm to solve the Multiple Sequence Alignment problem. The algorithm is a Simulated Annealing (SA) that exploits the representation of the Multiple Alignment between DD sequences as a directed polymer in DD dimensions. Within this representation we can easily track the evolution in the configuration space of the alignment through local moves of low computational cost. At variance with other probabilistic algorithms proposed to solve this problem, our approach allows for the creation and deletion of gaps without extra computational cost. The algorithm was tested aligning proteins from the kinases family. When D=3 the results are consistent with those obtained using a complete algorithm. For D>3D>3 where the complete algorithm fails, we show that our algorithm still converges to reasonable alignments. Moreover, we study the space of solutions obtained and show that depending on the number of sequences aligned the solutions are organized in different ways, suggesting a possible source of errors for progressive algorithms.Comment: 7 pages and 11 figure

    Incorporating Ambipolar and Ohmic Diffusion in the AMR MHD code RAMSES

    Full text link
    We have implemented non-ideal Magneto-Hydrodynamics (MHD) effects in the Adaptive Mesh Refinement (AMR) code RAMSES, namely ambipolar diffusion and Ohmic dissipation, as additional source terms in the ideal MHD equations. We describe in details how we have discretized these terms using the adaptive Cartesian mesh, and how the time step is diminished with respect to the ideal case, in order to perform a stable time integration. We have performed a large suite of test runs, featuring the Barenblatt diffusion test, the Ohmic diffusion test, the C-shock test and the Alfven wave test. For the latter, we have performed a careful truncation error analysis to estimate the magnitude of the numerical diffusion induced by our Godunov scheme, allowing us to estimate the spatial resolution that is required to address non-ideal MHD effects reliably. We show that our scheme is second-order accurate, and is therefore ideally suited to study non-ideal MHD effects in the context of star formation and molecular cloud dynamics

    Against Chaos in Temperature in Mean-Field Spin-Glass Models

    Full text link
    We study the problem of chaos in temperature in some mean-field spin-glass models by means of a replica computation over a model of coupled systems. We propose a set of solutions of the saddle point equations which are intrinsically non-chaotic and solve a general problem regarding the consistency of their structure. These solutions are relevant in the case of uncoupled systems too, therefore they imply a non-trivial overlap distribution P(qT1T2)P(q_{T1T2}) between systems at different temperatures. The existence of such solutions is checked to fifth order in an expansion near the critical temperature through highly non-trivial cancellations, while it is proved that a dangerous set of such cancellations holds exactly at all orders in the Sherrington-Kirkpatrick (SK) model. The SK model with soft-spin distribution is also considered obtaining analogous results. Previous analytical results are discussed.Comment: 20 pages, submitted to J.Phys.

    Stabilization of apple peel by drying. Influence of temperature and ultrasound application on drying kinetics and product quality

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in Drying Technology on 2019, available online at: http://www.tandfonline.com/10.1080/07373937.2018.1474476[EN] Increasing the value of the waste generated by food processing is a must from an environmental and economic point of view. This paper addresses the influence of drying temperature and ultrasound application on the drying kinetics and quality of apple peel (Royal Gala var.). Samples were dried at -10, 30, 50 and 70 ºC without and with (50 W) ultrasound application. Color, antioxidant capacity, total phenolic and ascorbic acid content were measured. Ultrasound application and drying temperature significantly shortened the drying time and affected the quality parameters. The drying carried out at 30 ºC with ultrasound application was a fast process that provided samples with good color and antioxidant attributes.The authors acknowledge the financial support of INIA-ERDF throughout the project RTA2015-00060-C04-02.Martins, MP.; Cortés, EJ.; Eim, V.; Mulet Pons, A.; Carcel, JA. (2019). Stabilization of apple peel by drying. Influence of temperature and ultrasound application on drying kinetics and product quality. Drying Technology. 37(5):559-568. https://doi.org/10.1080/07373937.2018.1474476S55956837

    Near-field heat transfer in a scanning thermal microscope

    Full text link
    We present measurements of the near-field heat transfer between the tip of a thermal profiler and planar material surfaces under ultrahigh vacuum conditions. For tip-sample distances below 10-8 m our results differ markedly from the prediction of fluctuating electrodynamics. We argue that these differences are due to the existence of a material-dependent small length scale below which the macroscopic description of the dielectric properties fails, and discuss a corresponding model which yields fair agreement with the available data. These results are of importance for the quantitative interpretation of signals obtained by scanning thermal microscopes capable of detecting local temperature variations on surfaces

    Polynomial iterative algorithms for coloring and analyzing random graphs

    Get PDF
    We study the graph coloring problem over random graphs of finite average connectivity cc. Given a number qq of available colors, we find that graphs with low connectivity admit almost always a proper coloring whereas graphs with high connectivity are uncolorable. Depending on qq, we find the precise value of the critical average connectivity cqc_q. Moreover, we show that below cqc_q there exist a clustering phase c[cd,cq]c\in [c_d,c_q] in which ground states spontaneously divide into an exponential number of clusters. Furthermore, we extended our considerations to the case of single instances showing consistent results. This lead us to propose a new algorithm able to color in polynomial time random graphs in the hard but colorable region, i.e when c[cd,cq]c\in [c_d,c_q].Comment: 23 pages, 10 eps figure

    Transport on percolation clusters with power-law distributed bond strengths: when do blobs matter?

    Get PDF
    The simplest transport problem, namely maxflow, is investigated on critical percolation clusters in two and three dimensions, using a combination of extremal statistics arguments and exact numerical computations, for power-law distributed bond strengths of the type P(σ)σαP(\sigma) \sim \sigma^{-\alpha}. Assuming that only cutting bonds determine the flow, the maxflow critical exponent \ve is found to be \ve(\alpha)=(d-1) \nu + 1/(1-\alpha). This prediction is confirmed with excellent accuracy using large-scale numerical simulation in two and three dimensions. However, in the region of anomalous bond capacity distributions (0α10\leq \alpha \leq 1) we demonstrate that, due to cluster-structure fluctuations, it is not the cutting bonds but the blobs that set the transport properties of the backbone. This ``blob-dominance'' avoids a cross-over to a regime where structural details, the distribution of the number of red or cutting bonds, would set the scaling. The restored scaling exponents however still follow the simplistic red bond estimate. This is argued to be due to the existence of a hierarchy of so-called minimum cut-configurations, for which cutting bonds form the lowest level, and whose transport properties scale all in the same way. We point out the relevance of our findings to other scalar transport problems (i.e. conductivity).Comment: 9 pages + Postscript figures. Revtex4+psfig. Submitted to PR

    Atmospheric freeze drying assisted by power ultrasound

    Full text link
    [EN] Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms-1), temperature (-10ºC) and relative humidity (10%) with (20.5 kWm-3, USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.Santacatalina Bonet, JV.; Carcel Carrión, JA.; Simal, S.; García Pérez, JV.; Mulet Pons, A. (2012). Atmospheric freeze drying assisted by power ultrasound. IOP Conference Series: Materials Science and Engineering. 42:5-8. doi:10.1088/1757-899X/42/1/012021S5842Stawczyk, J., Li, S., Witrowa-Rajchert, D., & Fabisiak, A. (2006). Kinetics of Atmospheric Freeze-drying of Apple. Transport in Porous Media, 66(1-2), 159-172. doi:10.1007/s11242-006-9012-4Wolff, E., & Gibert, H. (1990). ATMOSPHERIC FREEZE-DRYING PART 1 : DESIGN, EXPERIMENTAL INVESTIGATION AND ENERGY-SAVING ADVANTAGES. Drying Technology, 8(2), 385-404. doi:10.1080/07373939008959890García-Pérez, J. V., Cárcel, J. A., Benedito, J., & Mulet, A. (2007). Power Ultrasound Mass Transfer Enhancement in Food Drying. Food and Bioproducts Processing, 85(3), 247-254. doi:10.1205/fbp07010Gallego-Juárez, J. A., Riera, E., de la Fuente Blanco, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of High-Power Ultrasound for Dehydration of Vegetables: Processes and Devices. Drying Technology, 25(11), 1893-1901. doi:10.1080/07373930701677371Hassini, L., Azzouz, S., Peczalski, R., & Belghith, A. (2007). Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79(1), 47-56. doi:10.1016/j.jfoodeng.2006.01.02

    Effect of External Noise Correlation in Optical Coherence Resonance

    Get PDF
    Coherence resonance occurring in semiconductor lasers with optical feedback is studied via the Lang-Kobayashi model with external non-white noise in the pumping current. The temporal correlation and the amplitude of the noise have a highly relevant influence in the system, leading to an optimal coherent response for suitable values of both the noise amplitude and correlation time. This phenomenon is quantitatively characterized by means of several statistical measures.Comment: RevTeX, 4 pages, 7 figure
    corecore