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Transport on percolation clusters with power-law distributed bond strengths
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Cristian F. Moukarzel
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The simplest transport problem, namely finding the maximum flow of current, or maxflow, is investigated on
critical percolation clusters in two and three dimensions, using a combination of extremal statistics arguments
and exact numerical computations, for power-law distributed bond strengths of the typeP(s);s2a. Assum-
ing that only cutting bonds determine the flow, the maxflow critical exponentv is found to bev(a)5(d
21)n11/(12a). This prediction is confirmed with excellent accuracy using large-scale numerical simulation
in two and three dimensions. However, in the region of anomalous bond capacity distributions (0<a<1) we
demonstrate that, due to cluster-structure fluctuations, it is not the cutting bonds but the blobs that set the
transport properties of the backbone. This ‘‘blob dominance’’ avoids a crossover to a regime where structural
details, the distribution of the number of red or cutting bonds, would set the scaling. The restored scaling
exponents, however, still follow the simplistic red bond estimate. This is argued to be due to the existence of
a hierarchy of so-called minimum cut configurations, for which cutting bonds form the lowest level, and whose
transport properties scale all in the same way. We point out the relevance of our findings to other scalar
transport problems~i.e., conductivity!.

DOI: 10.1103/PhysRevE.67.056106 PACS number~s!: 64.60.Ak, 74.25.Fy, 73.50.2h

I. INTRODUCTION

The transport properties of percolation clusters have been
a subject of interest for many years@1,2#. A natural problem
to study is, e.g., conductivity, and one often complicates it
further by using random bond ‘‘strengths’’s with a power-
law tail of the forms2a @3–11#. In the first place, because
this allows one to represent continuum percolation@5,7# and
thus get closer to some actual physical realizations of perco-
lation. A second reason why these systems are interesting is
the equivalence@12# between transport on strongly disor-
dered systems and percolative transport@35#.

Transport critical exponents on these systems are found to
depend ona, which means that strict universality is lost. The
original observation that transport exponents become non-
universal is due to Kogut and Straley@3#, who used mean-
field-type arguments. Later Straley@4#, with the help of the
nodes-links-blobs@13–16# picture of the backbone, con-
cluded that the conductivity exponentt, such thatS;(p
2pc)

t, is the maximum of the universal exponentt05(d
22)n1z and the a-dependent exponentt̄ (a)5(d22)n
11/(12a). Heren is the correlation length exponent andz
measures the contribution of blobs to the resistance between
two points on the backbone, for the case of constant conduc-
tances. For the conductivity problem thus there is a crossover
from the universal exponentt0 for a,ac to t̄ (a) in the
‘‘anomalous regime’’a.ac . Although not without some
controversy initially @6,8,9,17#, this result is by now well
established@8–11#.

It is somehow surprising thatt̄ (a) can be analytically
calculated in the anomalous regime, given that the universal
exponentt0, which applies to the arguably simpler case of

constant conductance, has not been analytically derived up to
now. The difficulty in derivingt0 resides in thatz is deter-
mined by the blobs, and thus one would require detailed
information @18# about the internal structure of the blobs.

On the contrary, it has been argued by several authors
@6,11,18# that t̄ (a) in the anomalous regime is determined
by the cutting bonds alone. Since these form linear chains of
typically L1/n bonds atpc @15#, the resulting conductivity
exponent is easily derived. The argument to support the be-
lief that blobs are irrelevant in the anomalous regime seems
to be roughly the following: an exceedingly small conductiv-
ity falling on a blob has little effect on the overall conduc-
tance, because there are many alternative parallel paths. On
the other hand, if this small conductivity is located on a
cutting bond it will certainly dominate the system conduc-
tance. While this argument is true in principle, this reasoning
misses the fact that the number of cutting bonds is itself a
fluctuating quantity. The issue of blob irrelevance has been
considered by Machtaet al. @6# using a hierarchical model
for the backbone, to reach similar conclusions. However, as
noted by the authors, their model does not include structural
fluctuations. We will demonstrate in this work that it is in
fact the blobs and not the cutting bonds that determine the
critical transport properties, even in the anomalous regime.
This, as we will see, is due to structural fluctuations. How-
ever, the resulting transport properties turn out to be the same
as those given by the most simplistic red bond estimate.

A related critical transport problem, which is relevant for
disordered superconductors, is that of determining the criti-
cal current densityJc5I cL

2(d21) that a percolation network
can sustain, and which abovepc behaves asJc;(p2pc)

v

@19–24#. This problem has a simple geometrical interpreta-
tion. Finding the maximum flow of current, ormaxflow, is
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equivalent to finding the surface across the system, on which
the sum of critical currents of the bonds is maximized. As we
will draw advantage of this analogy later on, we note that
this surface is called amincut in computer science language
@25–27#.

In this paper our goal is to present a comprehensive study
of the maxflow problem on percolation clusters. This is mo-
tivated by the following observations. First, this is the sim-
plest transport problem that one can think about, and has not
been as such discussed much in the literature. Second, we are
able to use to our advantage recent developments@28# on
combinatorial optimization algorithms, in the context of dis-
ordered systems. Here one can use a three-step approach, in
which first a critical spanning cluster is set, its backbone is
pruned out, and finally that is used for the maxflow-mincut
problem. Each stage is solved with one of the powerful graph
optimization algorithms for the particular problem, as dis-
cussed later.

In the simplest version of the maxflow problem, all
present bonds have the same critical current, orcapacity ic
and absent bonds havei c50. At criticality, a typical perco-
lating cluster is a linear chain of cutting bonds and thusI c
5 i c . From this observation plus the usual scaling relation
Jc(L);L2v/n, one concludes that@19# v5(d21)n. This
result is consistent with experiments@19,22# and numerical
simulation @21,24#. In a more realistic model, each present
bond has a random capacityi c with power-law distribution
P( i c); i c

2a . This is, for example, the case for continuum
percolation models@20,21,23#. A simple extension of the
‘‘typical cutting-bond string’’ argument givesv(a)5(d
21)n11/(12a) as we show later in Sec. II.

In the following we will find it useful to compare the
conductivity and critical current problems to each other. This
comparison is done by interpreting the random bond vari-
ables i c alternatively as bond conductancess or as bond
capacitiesi c . Consider, for example, two bonds withs1 and
s2 connected in parallel. The resulting conductancespar
5s11s2 is then the same as the maximum currentI max that
can flow if s j are capacities. If these bonds are instead con-
nected in series, thensseries5(s1

211s2
21)21 and I max

5min(s1,s2) are no longer equal. However, the series con-
ductance can be written as@29# sseries5min(s1,s2)(1
1b)21, with b5min(s1,s2)/max(s1,s2). In the limit of
strong disorder (a→1), b is typically negligible. We con-
clude that, in this limit, also in the series case the conduc-
tance equals exactly the maximum current obtained by inter-
pretings j as capacitiesi c . Therefore in thea→1 limit, the
resistive current problem and the superconducting current
problem~maxflow! are equivalent, at least for all structures
that can be solved by a combination of series and parallel
bond reductions@36#. Moreover, as shown in Sec. III B, we
find that the equivalence noticed above is valid not only in
the a→1 limit but for a range ofa values, for strings of
bonds in series.

In deriving a-dependent exponents, both forv(a) and
t̄ (a), the assumption is made that the backbone always con-
tainsL1/n cutting bonds. While this is true typically, the num-
ber of cutting bonds is in fact a fluctuating variable whose

distribution may extend down to zero in the form of a power
law ~see later!. The existence of such fluctuations has been
noted by some works previously@30,31#, but their role in
transport properties has not been considered. These number
fluctuations, we will show in Sec. II, do modify the transport
exponent that results from a string of cutting bonds. Then by
analyzing the conceptually and numerically simple maxflow
problem, we will be able to show that in fact blobs cannot be
neglected. The net outcome, which we justify by a heuristic
hierarchical picture, is that although the simplest cutting-
bond scaling~without fluctuations! is restored, it is in fact the
blobs that set this scaling behavior.

The structure of the rest of the paper is as follows. Section
II presents the analytical discussion, based on a ‘‘fluctuating
number of cutting-bonds’’ picture. In Sec. III we go through
one by one the numerical methods employed, the findings
about structural fluctuations, and some further numerical
analysis of the extremal statistics aspects. Section IV con-
tains the results concerning the maxflow problem, and some
details of interest that can be determined from analyzing
large statistics. Section V finishes the paper with a discus-
sion.

II. CRITICAL CURRENT DENSITY

We consider diluted lattices where the maximum super-
current i c that a present bond can sustain is a random vari-
able distributed between 0 and 1 according to

P~ i c!5~12a!c2a, ~1!

with a,1.
Let I c be the maximum supercurrent~or maxflow! that the

whole system, given a set of values$ i c%, can sustain. The
average current densityJc is thenJc5^I c&/L

(d21), and goes
to zero atpc as

Jc;~p2pc!
v. ~2!

Right at pc , and for a system of finite linear sizeL, usual
finite-size scaling arguments@18,32# imply that

Jc~pc ,L !;L2v/n, ~3!

wheren is the percolation correlation length exponent. The
nodes-links-blobs picture of the percolation cluster@13–16#
tells us that, right atpc , there is typically a single connected
path through the sample. This path is a sequence of multiply
connected regions~blobs! connected by strings of singly
connected bonds, also calledcutting bonds. The average
number of cutting bonds is of the order ofL1/n at pc @15#.

We now start by considering the maximum flowf * al-
lowed by a string ofn cutting bonds, and which obviously
equals the least capacity among then bonds. The typical
least valuef n* among a collection ofn@1 random numbers
i c with probability P( i c) satisfies

E
0

f n* P~ i !di51/n. ~4!
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Thus

f n* 5n21/(12a). ~5!

On a system of linear sizeL at pc , the average number of
cutting bonds isL1/n @15#. In replacing this one obtainsf n*
;L21/n(12a);Ld21Jc;L (d21)2v(a)/n and thus from Eq.~3!,

v~a!5~d21!n11/~12a! ~6!

as advanced in the Introduction.
This typical-n argument, however, neglects the fact thatn

is a fluctuating number. SinceP(n) actually has a power-law
tail extending down ton50 @31#, this neglect turns out to be
not correct for quantities that depend on 1/n as Eq.~5!.

We now present a more careful treatment, which takes
into account the fluctuations inn. It is known @31# that
PL(n)5(nL* )21P̂(n/nL* ), whereP̂(n̂) is a size-independent
function, andnL* ;L1/n @15#. Since for the purpose of our

discussion all that matters is the behavior ofP(n) as n̂

→0, we take for simplicity P̂(n̂)5(11a)n̂a, for 0,n̂
<1. Thus,

P~n!5~11a!~nL* !2(11a)na, ~7!

for 1<n<nL* . We will for the moment assume thatn cannot
be zero.

Let now f be the minimum amongn numbersx distributed
with probability P(x). The distributionmn( f ) of f is deter-
mined as

mn~ f !5nP~ f !H 12E
0

f

P~x!dxJ n21

'nP~ f !expS 2nE
0

f

P~x!dxD . ~8!

Because of the strong exponential suppression that occurs for
f larger than f n* defined by Eq.~4!, we can approximate
mn( f ) by

mn~ f !'H nP~ f ! if 0 , f < f n*

0 if f . f n* .
~9!

Now allowing for the fact thatn fluctuates, the probability
distribution function~PDF! of the maxflowf through a string
of cutting bonds is

m~ f !5E
1

`

dnP~n!mn~ f !5~11a!

3~nL* !2(11a)E
1

nL* dnnamn~ f !, ~10!

for 0, f ,1. From Eqs.~5! and ~9! we conclude that, for a
given value off, the only nonzero contributions in Eq.~10!
come from n values which are smaller thanh( f )
5 f 2(12a). Thus

m~ f !5
P~ f !~11a!

~nL* !11a E
1

min[nL* ,h( f )]
na11dn. ~11!

Defining f typ5(nL* )21/(12a), k5(a11)(12a), and l
5k/(a12), this last expression can be written as

m~ f !55 l f typ
21S f

f typ
D 2a

if 0 , f , f typ

l f typ
21S f

f typ
D 2(11k)

if f typ, f ,1.

~12!

This gives the PDF for the maxflowf through a string of
cutting bonds on a system of sizeL, allowing for fluctuations
in the numbern of bonds on the string. The strength of the
fluctuations of 1/n is characterized by the exponentk, which
in turn depends ona. If a→` ~nonfluctuating limit!, m( f ) is
nonzero only forf , f typ . Thus^ f &; f typ and Eq.~6! is re-
covered in this case. However, it is known thata'0.22 in
two dimensions@31#.

For generala and a, m( f ) has a power-law tail with
exponent (11k) for f @ f typ . The importance of this power-
law tail is evidenced by considering the average flow

^ f &5
l

22a
f typ1

l

12k
~ f typ!

k. ~13!

When k.1, ^ f &; f typ;(nL* )21/(12a);L21/n(12a) and Eq.
~6! is recovered. However, ifa.a/(a11) (k,1), the
power-law tail dominates the average. In this case^ f & f typ

k

@ f typ . Thereforê f &;L2(a11)/n, and Eq.~3! implies that in
this case,

v5~d21!n1a11. ~14!

The meaning of this is clear. Ifa is large, typical cases with
O(nL* ) cutting bonds will only allow an exceedingly small
flux f. The average floŵ f &, however will be dominated by
the very rare cases in whichn is small and for whichf
;O(1)@ f typ . So finally we conclude that, if we idealize the
backbone atpc as a string ofn cutting bonds, and ifP(n)
behaves for smalln asna, one has that

v~a!5H 1

12a
1n~d21! if a,

a

11a

a111n~d21! if a.
a

11a
.

~15!

III. NUMERICAL RESULTS

A. Algorithms

In this section we test our analytical derivation ofv(a) of
Sec. II in two and three dimensions on large systems, with
the help of powerful combinatorial algorithms@28#. Percola-
tion backbones are first generated by means of a matching
algorithm @28,33#, for square and cubic lattices. We do this
by randomly adding bonds one at a time until a percolation
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path is first present. At this point the matching algorithm
identifies the conducting backbone, exactly at the percolation
point for each sample. Alternatively, one could fix the den-
sity of present bonds to a value close to the infinite system
critical densitypc , and then identify the percolating back-
bone with the same algorithm. However, our procedure has
the advantage that no separate estimate is necessary forpc .

For each percolating backbone, capacities are drawn from
the given distribution, and the maxflow is calculated by
means of a flow augmentation algorithm~see Ref.@28# for a
review of the maxflow problem!. The efficiency of the max-
flow algorithm is highly increased when working on the
backbone only, so we are able to analyze thousands of
samples for each value ofa. In this way we estimate numeri-
cally the average flow atpc for several linear sizesL, and
from its scaling propertiesv(a) is derived. The largest
sample sizes studied wereL54000 in two dimensions and
L5120 in three dimensions. These are mostly set by the
CPU usage of the combination of the matching and flow
algorithms, which in turn is dominated forL large by the
scaling of the matching part. The maxflow code is actually
sublinear inn5L2 in CPU time, since the mass of the back-
bone scales with its fractal dimension. Notice that once the
backbone of a sample has been established, it can be used for
several consequent maxflow determinations for differenta to
save CPU time. In the Appendix, we present an idea for an
optimal algorithm for this problem.

B. Results

Results are shown in Fig. 1. Our numerical simulation
results confirm Eq.~6! nicely. However, the saturation of
v(a) predicted by Eq.~15! for a.a/(a11) does not occur.
Notice thata is not a universal exponent but depends on the
ensemble. For example, if the ensemble is determined by
fixing p5pc , numerical measurements and renormalization
group calculations@31# give a'0.22. Additionally, roughly
20% of the connected samples have zero cutting bonds
@30,31#, that is,P(n);0.20d(n)1cn0.22 for small n.

However, other ensembles can be considered. Consider,
for example, the percolation cluster defined by the construc-
tion of Ambegaokaret al., in which conductances are laid
down on the lattice in order of increasing conductivity until a

percolating path is created@12#. At least the last conductance
to be laid down is a cutting bond, soP(0)50. Experimen-
tally this situation is realized when superconductive samples
grow percolatively by deposition@23#. In this case the point
at which the supercurrent is nonzero for the first time is
defined by the first appearance of a connected path, not by a
fixed density of occupied bonds.

As we add bonds one at a time, our numerical simulations
correspond to this case rather than to fixingp5pc . Our mea-
surements of the distribution of the number of cutting bonds
indicate~Fig. 2! that P(n);na for small n, with a'1.25 in
two and three dimensions.

Different ensembles give rise to different distributions of
the number of cutting bonds, and specifically to different
values ofa so, if Eq.~15! were to hold for percolation clus-
ters, the resulting transport exponent would be ensemble de-
pendent. However, our maxflow measurements on percola-
tion clusters are consistent with Eq.~6! for all a, without any
sign of saturation.

In view of the failure of percolation clusters to show the
predicted exponent saturation, we first confirmed the validity
of Eq. ~15! for strings of cutting bonds. We did so by nu-
merically studying strings of bonds whose numbern is dis-
tributed according to Eq.~7!, and whose conductances~or
capacities, for the maxflow problem! are distributed accord-
ing to Eq.~1!. The maximum flow is simply the least critical
current i c . Alternatively, bond capacitiesi c may be inter-
preted as conductances, in which case the resulting conduc-
tance for the whole string is simplys51/( j 51

n 1/i c( j ). We

FIG. 1. Maxflow exponents measured for two-dimensional~2D!
~empty squares! and 3D~filled squares! percolation clusters atpc .
Dotted lines indicate the theoretical resultv(a)/n2(d21)
51/n(12a), with 1/n50.75 ~2D! and 1.13~3D!. The maximum
linear size simulated wasL54000 in two dimensions andL5120
in three dimensions. Error bars are smaller than symbol sizes.

FIG. 2. Distribution of the numbern of cutting bonds on perco-
lation clusters in two@top, L532 ~empty squares!, 128 ~asterisks!
and 1024~full squares!# and three@bottom,L516 ~empty squares!,
32 ~asterisks! and 64 ~full squares!# dimensions, in terms of the
reduced variableN5n/L1/n. We find thatP(n) is consistent with a
power lawna for smalln ~dashed lines!. Within numerical accuracy,
the exponenta51.25 both in two and three dimensions.
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find for these strings of cutting bonds~Fig. 3! that Eq.~15! is
satisfied very accurately. Figure 3 also shows that the con-
ductivity and maxflow exponents are the same fora.0,
indicating that the conductance is dominated by the leasti c
value in that regime. We conclude that Eq.~15! is exact for
strings of cutting bonds. Thus the failure of Eq.~15! for
percolation clusters simply means that thesedo notbehave as
strings of cutting bonds do. In other words, fora near 1, it is
not correct to approximate a percolation cluster as a string of
cutting bonds.

IV. THE ROLE OF BLOBS

A. Structural fluctuations

Our results~Fig. 1! show that the maxflow exponentv(a)
follows Eq. ~6!, although fluctuations in the numbern of
cutting bonds, which exist and are relevant in real percola-
tion clusters, were disregarded in its derivation. So we face a
somehow paradoxical situation, since a naive calculation
gives the correct result@Eq. ~6!#, while a seemingly more
careful calculation that takes into account the fluctuations in
n @Eq. ~15!# does not. As mentioned in the preceding section,
this means that our assumption that the maximum flow is
determined by the cutting bonds alone needs to be revised. In
order to test this assumption, we separately measure the
maximum flow allowed by cutting bonds and by blobs,
which we callmc andmb , respectively, for each percolation
cluster. The overall maximum flow is the minimum of these.
The procedure works such that one picks first the smallest of
the cutting-bond capacities, and then assigns to it an infinite
capacity. Then the maxflow is found, which is now given by
the minimal blob mincut~configuration!. Figures 4~a–c!
show how the PDF ofmc ~cutting-bond flow! and the total
PDF vary with a. For nonanomalous valuesa50 @Fig.
4~a!#, the distribution is centered around a well-defined mean
value. With increasinga one enters the anomalous regime,
and the PDF develops a power-law tail. This would be ex-

FIG. 3. Maxflow ~squares! and ohmic current~circles! scaling
exponents, as numerically estimated for strings of cutting bonds.
The number of bondsn on the string is distributed according to Eq.
~7!, with a51.00 andnL* 5L1/n with 1/n50.75. Averages were
taken over 107 samples, forL532,128,512,2048, and 8192. Notice
that ~apart from a trivial shift! both critical exponents saturate to
(a11)/n for largea. For the maxflow exponent this is the behav-
ior predicted by Eq.~15!. The fact that the~shifted! conductivity
exponent has the same behavior for alla.0 indicates that the sum
of resistances along the string is dominated by the largest one, in
this regime.

FIG. 4. Probability distribution for the maxflow allowed by cut-
ting bonds ~squares!, blobs ~circles!, and resulting maxflow
~crosses!, which is the minimum of both. Results are shown forL
5256 in two dimensions. From top to bottom, the disorder expo-
nent isa50.0, 0.5, and 0.7.
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pected to result from the cutting bonds, while the blob flows
mb have a much narrower distribution, decaying roughly ex-
ponentially for large flows. This means that, whenmc is
large, most probablymb will be much smaller and thus the
overall flow will be determined bymb . Thus, although our
derivation of Eq.~15! is correct for strings of cutting bonds,
it is the blobs that determine the flow in those rare cases in
which mc is large. Therefore, the power-law tail inP(mc),
which is responsible for the saturation ofv(a) at large val-
ues ofa in Eq. ~15!, is suppressed by blobs on percolation
clusters. Figure 5 illustrates this by showing that the fraction
of cases—for a given maxflowm—that are dominated by the
blob contribution follow a separate PDF. The collapse is not
completely perfect, since there may be a very slight trend in
the total fraction of blob-dominated cases with increasingL.
On the other hand, the variances of the maxflow distributions
scale as expected~as the mean!. It is worth mentioning that
the distribution ofk cuts~number of bonds in the mincut! is
roughly exponential, so that^k& is of the order of 1.4–1.5 for
a50.7.

It is also worth pointing out that there are cross correla-
tions between the structural quantities on one hand, and be-
tween the structure and the maxflow on the other hand.
These are illustrated in Figs. 6 and 7. In a system with a
given L it is after a moment’s deliberation rather clear that
there may be an inverse correlation between thenumberof
cutting bonds and the sample-to-sample weight of the back-
bone. We have not tried to measure this relationship quanti-
tatively, but given such a relation it is no surprise~Fig. 7!
that the mass of the backbone correlates strongly with the
maxflow value.

B. Blob dominance

In order to prove that our hypothesis, namely, that the
blobs set the maxflow scale, is correct, we still have to show
that the blob flowmb has the right scaling properties, i.e.,
m̄b;L21/n(12a). A complete calculation of the maximum
flow allowed by blobs would require detailed information

about the blob’s internal structure. However, an estimate can
be obtained from the following arguments. It is known that
the backbone atpc has a hierarchical, or self-similar, struc-
ture @15#. At the top level of this hierarchy, the backbone
itself can be thought of as a string of singly connected~cut-
ting! bonds interspersed with blobs. Blobs in turn are loops
made of doubly connected bonds interspersed with smaller
blobs and so on, as depicted in Fig. 8. This hierarchical struc-
ture has its counterpart in a similar classification of surfaces
that separate the backbone into two pieces~cuts!. At the top
level of this hierarchy are the surfaces$S1% that cut the back-
bone at just one bond, next come those surfaces$S2% that cut
the backbone at exactly two bonds, etc. The capacityC(S) of
a cutS is defined as the sum of the capacitiesi c of the bonds
crossed by it. Because of the maxflow-mincut theorem, the
maximum flow equals the minimum of the cuts’ capacities.
Our assumption that cutting bonds alone determine the maxi-
mum flow is equivalent to minimizing the capacities among
the S1 alone. We now describe how the next levelS2 in this
hierarchy can be analyzed. Coniglio@15# has shown that the

FIG. 5. Probability distributions for the blob-dominated fraction.
The data are collapsed by scaling with the average maxflow.m5
20.7.

FIG. 6. The number of singly connected bonds forL5256 vs
the backbone mass, sample to sample. 10 000 samples.

FIG. 7. The maxflow, forL5256 andm520.7, vs the actual
backbone mass. The average is a running average over 20 samples,
with consecutive masses from 104 samples.
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derivative of the spanning probabilityp8 with respect top is
proportional to the average number of cutting bonds^n&. An
extension of his reasoning, due to Kantor@30#, allows one to
write the second derivative ofp8(p) with respect top at pc

as]2p8/]p2upc
;^n(n21)22N2&upc

, wheren is the number

of cutting bonds andN2 is the number of pairs of doubly
connected bonds. Because by definition]2p8/]p250 at pc

@37#, one finds that 2̂N2&5^n2&2^n& at pc . Since ^nk&
;Lk/n @38#, we conclude that the typical number of pairs of
doubly connected bonds atpc is N2;L2/n. However, this
alone is not enough to estimate the typical maximum flow
allowed by doubly connected bonds, for they might be
grouped into blobs in different ways. Fortunately the total
number n2 of doubly connected bonds atpc can also be
calculated@15#, and it turns out to bên2&;L1/n. This means
that the blob statistics is dominated by one large ring of
roughly L1/n bonds and therefore contains a number of pairs
of doubly connected bonds, which is of the order ofL2/n.
Using this information we can now estimate the maximum
flow allowed by blobs at the level of doubly connected
bonds. This large blob dominates the maximum flow since
lesser blobs, located somewhere else along the backbone,
will allow a larger flow. Thus one has to find the maximum
flow for two parallel strings, each containingL1/n cutting
bonds. The typical flow allowed by each string is of the order
of L21/n(12a) and therefore the typical maximum flow al-
lowed by doubly connected blobs, which is twice this, is of
the right order.

Our reasoning for doubly connected bonds only considers
typical cases, i.e., fluctuations in the number of doubly con-
nected bonds are disregarded. If a particular cluster, in addi-
tion to having a small number of cutting bonds, also has a
small number of doubly connected bonds, then the next lev-
els in this hierarchy would be relevant. The same sort of
reasoning can be used at all levels in the hierarchy of cuts,
but because the algebra becomes too complicated for triply
connected bonds already, we did not test this in detail. How-
ever, it seems safe to assume that min$C(Sk)%;L21/n(12a) for
all k.2 as well. Additionally notice that, in order for the
mincut to be located at triply connected bonds, it is necessary
that the numbers of singly and doubly connected bonds be
simultaneously small, an occurrence which arguably has a
small probability.

We then see that, in those rare cases in which the number
of singly connected bonds is small~they allow a large flow!,
blobs take their role thus limiting the flow to a value that is
typically of the order ofL21/n(12a). This then shows that the
correct value of the exponentv(a) is given by Eq.~6!. Simi-
lar behavior is of course expected for other transport proper-
ties, e.g., conductivity, in the limit of anomalous distributions
of bond strengths. This is so because in this limit the resis-
tance of the whole cluster is dominated by that of the mincut,
where conductivities are interpreted as critical currents.

V. CONCLUSIONS

In this paper we have demonstrated that the transport
problem on percolation clusters still holds surprises. Our
findings deny the widespread notion that, in the limit of
anomalous strength distributions, it is the cutting bonds alone
that determine the transport properties. We show analytically,
and confirm numerically that, if blobs could be neglected
~because of their allowing a larger maxflow than cutting
bonds! then the overall system’s behavior would be strongly
dependent on the ensemble~the cutting-bond PDF tail expo-
nent!. This ensemble dependence would come about because
the number of cutting bonds has a ‘‘broad’’ distribution ex-
tending down to zero. However the predicted ensemble de-
pendence is not there, as we show numerically on large two-
and three-dimensional systems. Using scaling arguments we
then demonstrate that it is in fact the blobs that finally deter-
mine the average maxflow. However, we are forced to finish
with the paradoxical conclusion that though the expected
mechanism for the maxflow, namely, cutting-bond domi-
nance, does not work in the anomalous regime~largea), the
original cutting-bond estimate for the transport exponent is
nevertheless restored by the limiting effect of the blobs.
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APPENDIX: AN OPTIMAL ALGORITHM

We note that the augmenting path method is better here
than in the general maxflow problem~so-called push-relabel
preflow algorithms@34# enjoy the most popularity!. This is
since the structure of the backbone is essentially one dimen-
sional, the number of augmentations remains small, of the
order of 1. To remind the reader, such an algorithm consists
of flow augmentations, which are repeated until the mincut is
formed ~by a surface of blocked bonds! and maxflow is
reached. For each augmentation one needs to establish a path
from the ‘‘source’’ to the ‘‘sink,’’ which can be done, e.g., by
using shortest-distance path methods@28#.

The one-dimensional nature means that the backbone can
be decomposed into strings of subsequent cutting bondsCi

FIG. 8. Backbone structure.
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and and blobs separating such stringsBi . Thus the structure
is equivalent to the one-dimensional series
. . . CiBiCi 11 . . . . In principle, one may thus write a more
efficient algorithm by abandoning the lattice structure, and
describing the internal geometry of eachBi separately. Thus
an optimal version of the algorithm would entail the follow-
ing steps.

~i! Establish the structure (Bi ,Ci).
~ii ! Find an augmenting path along the chain, across

all Bi .

~iii ! Augment flow, that is, find the smallest capacity in
the Ci , and the smallest capacity in all theBi . This is f 1.

~iv! If f 1 equals the minimal cutting-bond capacity stop,
otherwise augment~subtractf 1 from Ci , and the paths inside
Bi).

~v! Update the paths inside thoseBj , only, where a bond
was saturated byf i ( i 51 to begin with!. Go to ~iii !.

We have used, instead, an Euclidean background for the
maxflow part, since the scaling of the matching program is
indeed the bottleneck.
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