146 research outputs found

    Brucella melitensis MucR, an orthologue of Sinorhizobium meliloti MucR, is involved in resistance to oxidative, detergent, and saline stresses and cell envelope modifications

    Get PDF
    Brucella spp. and Sinorhizobium meliloti are alphaproteobacteria that share not only an intracellular lifestyle in their respective hosts, but also a crucial requirement for cell envelope components and their timely regulation for a successful infectious cycle. Here, we report the characterization of Brucella melitensis mucR, which encodes a zinc finger transcriptional regulator that has previously been shown to be involved in cellular and mouse infections at early time points. MucR modulates the surface properties of the bacteria and their resistance to environmental stresses (i.e., oxidative stress, cationic peptide, and detergents). We show that B. melitensis mucR is a functional orthologue of S. meliloti mucR, because it was able to restore the production of succinoglycan in an S. meliloti mucR mutant, as detected by calcofluor staining. Similar to S. meliloti MucR, B. melitensis MucR also represses its own transcription and flagellar gene expression via the flagellar master regulator ftcR. More surprisingly, we demonstrate that MucR regulates a lipid A core modification in B. melitensis. These changes could account for the attenuated virulence of a mucR mutant. These data reinforce the idea that there is a common conserved circuitry between plant symbionts and animal pathogens that regulates the relationship they have with their hosts

    Binding of Brucella protein, Bp26, to select extracellular matrix molecules

    Get PDF
    Background: Brucella is a facultative intracellular pathogen responsible for zoonotic disease brucellosis. Little is known about the molecular basis of Brucella adherence to host cells. In the present study, the possible role of Bp26 protein as an adhesin was explored. The ability of Brucella protein Bp26 to bind to extracellular matrix (ECM) proteins was determined by enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). Results: ELISA experiments showed that Bp26 bound in a dose-dependent manner to both immobilized type I collagen and vitronectin. Bp26 bound weakly to soluble fibronectin but did not bind to immobilized fibronectin. No binding to laminin was detected. Biolayer interferometry showed high binding affinity of Bp26 to immobilized type I collagen and no binding to fibronectin or laminin. Mapping of Bp26 antigenic epitopes by biotinylated overlapping peptides spanning the entire sequence of Bp26 using anti Bp26 mouse serum led to the identification of five linear epitopes. Collagen and vitronectin bound to peptides from several regions of Bp26, with many of the binding sites for the ligands overlapping. The strongest binding for anti-Bp26 mouse serum, collagen and vitronectin was to the peptides at the C-terminus of Bp26. Fibronectin did not bind to any of the peptides, although it bound to the whole Bp26 protein. Conclusions: Our results highlight the possible role of Bp26 protein in the adhesion process of Brucella to host cells through ECM components. This study revealed that Bp26 binds to both immobilized and soluble type I collagen and vitronectin. It also binds to soluble but not immobilized fibronectin. However, Bp26 does not bind to laminin. These are novel findings that offer insight into understanding the interplay between Brucella and host target cells, which may aid in future identification of a new target for diagnosis and/or vaccine development and prevention of brucellosis

    Brucellosis and one health: inherited and future challenges

    Get PDF
    One Health is the collaborative efforts of multiple disciplines to attain optimal health for people, animals and the environment, a concept that historically owes much to the study of brucellosis, including recent political and ethical considerations. Brucellosis One Health actors include Public Health and Veterinary Services, microbiologists, medical and veterinary practitioners and breeders. Brucellosis awareness, and the correct use of diagnostic, epidemiological and prophylactic tools is essential. In brucellosis, One Health implementation faces inherited and new challenges, some aggravated by global warming and the intensification of breeding to meet growing food demands. In endemic scenarios, disease awareness, stakeholder sensitization/engagement and the need to build breeder trust are unresolved issues, all made difficult by the protean characteristics of this zoonosis. Extended infrastructural weaknesses, often accentuated by geography and climate, are critically important. Capacity-building faces misconceptions derived from an uncritical adoption of control/eradication strategies applied in countries with suitable means, and requires additional reference laboratories in endemic areas. Challenges for One Health implementation include the lack of research in species other than cattle and small ruminants, the need for a safer small ruminant vaccine, the need to fill in the infrastructure gap, the need for realistic capacity-building, the creation of reference laboratories in critical areas, and the stepwise implementation of measures not directly transposed from the so-called developed countries

    Systems Biology Approach Predicts Antibody Signature Associated with Brucella melitensis Infection in Humans

    Get PDF
    A complete understanding of the factors that determine selection of antigens recognized by the humoral immune response following infectious agent challenge is lacking. Here we illustrate a systems biology approach to identify the antibody signature associated with Brucella melitensis (Bm) infection in humans and predict proteomic features of serodiagnostic antigens. By taking advantage of a full proteome microarray expressing previously cloned 1406 and newly cloned 1640 Bm genes, we were able to identify 122 immunodominant antigens and 33 serodiagnostic antigens. The reactive antigens were then classified according to annotated functional features (COGs), computationally predicted features (e.g., subcellular localization, physical properties), and protein expression estimated by mass spectrometry (MS). Enrichment analyses indicated that membrane association and secretion were significant enriching features of the reactive antigens, as were proteins predicted to have a signal peptide, a single transmembrane domain, and outer membrane or periplasmic location. These features accounted for 67% of the serodiagnostic antigens. An overlay of the seroreactive antigen set with proteomic data sets generated by MS identified an additional 24%, suggesting that protein expression in bacteria is an additional determinant in the induction of Brucella-specific antibodies. This analysis indicates that one-third of the proteome contains enriching features that account for 91% of the antigens recognized, and after B. melitensis infection the immune system develops significant antibody titers against 10% of the proteins with these enriching features. This systems biology approach provides an empirical basis for understanding the breadth and specificity of the immune response to B. melitensis and a new framework for comparing the humoral responses against other microorganisms

    Examining ecological validity in social interaction: problems of visual fidelity, gaze, and social potential

    Get PDF
    Social interaction is an essential part of the human experience, and much work has been done to study it. However, several common approaches to examining social interactions in psychological research may inadvertently either unnaturally constrain the observed behaviour by causing it to deviate from naturalistic performance, or introduce unwanted sources of variance. In particular, these sources are the differences between naturalistic and experimental behaviour that occur from changes in visual fidelity (quality of the observed stimuli), gaze (whether it is controlled for in the stimuli), and social potential (potential for the stimuli to provide actual interaction). We expand on these possible sources of extraneous variance and why they may be important. We review the ways in which experimenters have developed novel designs to remove these sources of extraneous variance. New experimental designs using a ‘two-person’ approach are argued to be one of the most effective ways to develop more ecologically valid measures of social interaction, and we suggest that future work on social interaction should use these designs wherever possible

    Global Analysis of Quorum Sensing Targets in the Intracellular Pathogen Brucella melitensis 16 M

    Get PDF
    Many pathogenic bacteria use a regulatory process termed quorum sensing (QS) to produce and detect small diffusible molecules to synchronize gene expression within a population. In Gram-negative bacteria, the detection of, and response to, these molecules depends on transcriptional regulators belonging to the LuxR family. Such a system has been discovered in the intracellular pathogen Brucella melitensis, a Gram-negative bacterium responsible for brucellosis, a worldwide zoonosis that remains a serious public health concern in countries were the disease is endemic. Genes encoding two LuxR-type regulators, VjbR and BabR, have been identified in the genome of B. melitensis 16 M. A DeltavjbR mutant is highly attenuated in all experimental models of infection tested, suggesting a crucial role for QS in the virulence of Brucella. At present, no function has been attributed to BabR. The experiments described in this report indicate that 5% of the genes in the B. melitensis 16 M genome are regulated by VjbR and/or BabR, suggesting that QS is a global regulatory system in this bacterium. The overlap between BabR and VjbR targets suggest a cross-talk between these two regulators. Our results also demonstrate that VjbR and BabR regulate many genes and/or proteins involved in stress response, metabolism, and virulence, including those potentially involved in the adaptation of Brucella to the oxidative, pH, and nutritional stresses encountered within the host. These findings highlight the involvement of QS as a major regulatory system in Brucella and lead us to suggest that this regulatory system could participate in the spatial and sequential adaptation of Brucella strains to the host environment.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Morphological analysis of the sheathed flagellum of Brucella melitensis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It was recently shown that <it>B. melitensis </it>is flagellated. However, the flagellar structure remains poorly described.</p> <p>Findings</p> <p>We analyzed the structure of the polar sheathed flagellum of <it>B. melitensis </it>by TEM analysis and demonstrated that the Ryu staining is a good method to quickly visualize the flagellum by optical microscopy. The TEM analysis demonstrated that an extension of the outer membrane surrounds a filament ending by a club-like structure. The Δ<it>ftcR</it>, Δ<it>fliF</it>, Δ<it>flgE </it>and Δ<it>fliC </it>flagellar mutants still produce an empty sheath.</p> <p>Conclusions</p> <p>Our results demonstrate that the flagellum of <it>B. melitensis </it>has the characteristics of the sheathed flagella. Our results also suggest that the flagellar sheath production is not directly linked to the flagellar structure assembly and is not regulated by the FtcR master regulator.</p

    In Situ Microscopy Analysis Reveals Local Innate Immune Response Developed around Brucella Infected Cells in Resistant and Susceptible Mice

    Get PDF
    Brucella are facultative intracellular bacteria that chronically infect humans and animals causing brucellosis. Brucella are able to invade and replicate in a broad range of cell lines in vitro, however the cells supporting bacterial growth in vivo are largely unknown. In order to identify these, we used a Brucella melitensis strain stably expressing mCherry fluorescent protein to determine the phenotype of infected cells in spleen and liver, two major sites of B. melitensis growth in mice. In both tissues, the majority of primary infected cells expressed the F4/80 myeloid marker. The peak of infection correlated with granuloma development. These structures were mainly composed of CD11b+ F4/80+ MHC-II+ cells expressing iNOS/NOS2 enzyme. A fraction of these cells also expressed CD11c marker and appeared similar to inflammatory dendritic cells (DCs). Analysis of genetically deficient mice revealed that differentiation of iNOS+ inflammatory DC, granuloma formation and control of bacterial growth were deeply affected by the absence of MyD88, IL-12p35 and IFN-γ molecules. During chronic phase of infection in susceptible mice, we identified a particular subset of DC expressing both CD11c and CD205, serving as a reservoir for the bacteria. Taken together, our results describe the cellular nature of immune effectors involved during Brucella infection and reveal a previously unappreciated role for DC subsets, both as effectors and reservoir cells, in the pathogenesis of brucellosis
    corecore