9 research outputs found

    Dark Matter Searches with the ANTARES Neutrino Telescope

    Get PDF
    [EN] The MOSCAB experiment (Materia OSCura A Bolle) uses the Geyser technique for dark matter search. The results of the first 0.5 kg mass prototype detector using superheated C3F8 liquid were very encouraging, achieving a 5 keV nuclear recoil threshold with high insensitivity to gamma radiation. Additionally, the technique seems to be easily scalable to higher masses for both in terms of complexity and costs, resulting in a very competitive technique for direct dark matter search, especially for the spin dependent case. Here, we report as well in the construction and commissioning of the big detector of 40 kg at the Milano-Bicocca University. The detector, the calibration tests and the evaluation of the background will be presented. Once demonstrated the functionality of the detector, it will be operated at the Gran Sasso National Laboratory in 2015.We acknowledge the financial support of the Spanish Ministerio de Ciencia e InnovaciĂłn (MICINN) and Ministerio de EconomĂ­a y Competitividad (MINECO), Grants FPA2012-37528-C02-02, and Consolider MultiDark CSD2009-00064, and of the Generalitat Valenciana, Grants ACOMP/2014/153 and PrometeoII/2014/079.Ardid RamĂ­rez, M. (2016). Dark Matter Searches with the ANTARES Neutrino Telescope. Nuclear and Particle Physics Proceedings. 273:378-382. https://doi.org/10.1016/j.nuclphysbps.2015.09.054S37838227

    The ANTARES Optical Module

    Get PDF
    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km-squared and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R & D studies and is reviewed here in detail.Comment: 26 pages, 15 figures, to be published in NI

    The ANTARES optical module

    No full text
    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km2 and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R&D studies and is reviewed here in detail. © 2001 Elsevier Science B.V. All rights reserved

    Transmission of light in deep sea water at this site of the ANTARES neutrino telescope

    No full text

    The ANTARES neutrino project

    No full text

    Transmission of light in deep sea water at the site of the Antares neutrino telescope

    No full text

    Transmission of light in deep sea water at the site of the ANTARES neutrino telescope

    No full text
    The Antares neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the Antares site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length λabs and an effective scattering length λscteff. The values for blue (UV) light are found to be λabs ≃ 60(26) m, λscteff ≃ 265(122)m , with significant (∌15%) time variability. Finally, the results of A ntares simulations showing the effect of these water properties on the anticipated performance of the detector are presented. © 2004 Elsevier B.V. All rights reserved

    Transmission of Light in Deep Sea Water at the Site of the ANTARES Neutrino Telescope

    No full text
    The ANTARES neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the ANTARES site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length;,ab, and an effective scattering length lambda(sct)(eff). The values for blue (UV) light are found to be lambda(abs) similar or equal to 60(26) m, lambda(sct)(eff similar or equal to) 265(122) m, with significant (similar to15%) time variability. Finally, the results of ANTARES simulations showing the effect of these water properties on the anticipated performance of the detector are presented
    corecore