43 research outputs found

    Emission patterns of neutral pions in 40 A MeV Ta+Au reactions

    Get PDF
    Differential cross sections of neutral pions emitted in 181Ta + 197Au collisions at a beam energy of 39.5A MeV have been measured with the photon spectrometer TAPS. The kinetic energy and transverse momentum spectra of neutral pions cannot be properly described in the framework of the thermal model, nor when the reabsorption of pions is accounted for in a phenomenological model. However, high energy and high momentum tails of the pion spectra can be well fitted through thermal distributions with unexpectedly soft temperature parameters below 10 MeV.Comment: 16 pages (double-spaced), 5 figures; corrections after referee's comments and suggestion

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Verification of electromagnetic calorimeter concept for the HADES spectrometer

    Get PDF
    The HADES spectrometer currently operating on the beam of SIS18 accelerator in GSI will be moved to a new position in the CBM cave of the future FAIR complex. Electromagnetic calorimeter (ECAL) will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeVon the beam of the new accelerator SIS100. Calorimeter will be based on 978 massive lead glass modules read out by photomultipliers and a novel front-end electronics. Secondary gamma beam with energies ranging from 81 MeV up to 1399 MeV from MAMI-C Mainz facility was used to verify selected technical solutions. Relative energy resolution was measured using modules with three different types of photomultipliers. Two types of developed front-end electronics as well as energy leakage between neighbouring modules under parallel and declined gamma beams were studied in detail

    Measurement of low-mass e + e − pair production in 1 and 2 A GeV C–C collision with HADES

    Get PDF
    HADES is a secondary generation experiment operated at GSI Darmstadt with the main goal to study dielectron production in proton, pion and heavy ion induced reactions. The first part of the HADES mission is to reinvestigate the puzzling pair excess measured by the DLS collaboration in C+C and Ca+Ca collisions at 1A GeV. For this purpose dedicated measurements with the C+C system at 1 and 2A GeV were performed. The pair excess above a cocktail of free hadronic decays has been extracted and compared to the one measured by DLS. Furthermore, the excess is confronted with predictions of various model calculations. © 2009 Springer-Verlag / Società Italiana di Fisica. 62 1 81 84 Cited By :

    Critical infrastructure and the possibility of increasing its resilience in the context of the energy sector

    No full text
    The paper focuses on critical infrastructure and its resilience. The introductory parts of the paper define the concepts of critical infrastructure and resilience of critical infrastructure and further define its legislative basis. Then follows the definition of typical critical states in the field of power engineering. To a large extent, attention is also focused on methods for critical infrastructure protection and methods for strengthening critical infrastructure resilience. Within the selected area, a survey of the possibilities of critical infrastructure was carried out, which was evaluated. Based on the results, several recommended steps were identified in the sub-areas to which further research will be devoted

    Methodology of electricity supplying of critical infrastructure in crisis situations

    No full text
    The paper focuses on the issues associated with the supply of electricity to critical infrastructure in crisis situations. In the introductory passages, the paper focuses on the methodology of selecting objects of critical infrastructure. Subsequently, attention is paid to selected aspects associated with the operation of electricity generation during a crisis situations. By using suitable types of production units (gas turbines), it is possible to gradually start island operation in the surrounding region, primarily for critical infrastructure facilities, whose main task is to protect the population. In the practical part, the paper focuses on the issues of stability of the island operation mode. The results of the case study show that for the switch-on plan it is necessary to take into account the dynamic characteristics of island operation by feeding the objects of critical infrastructure gradually after small electrical power steps

    Voltage regulation and power losses reduction in a wind farm integrated MV distribution network

    No full text
    A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters

    Voltage Quality and Power Factor Improvement in Smart Grids Using Controlled DG Units

    No full text
    The increased penetration of renewable energy sources in the electrical grid, due to the rapid increase of power demand and the need of diverse energy sources, has made distributed generation (DG) units an essential part of the modern electrical grid. The integration of many DG units in smart grids requires control and coordination between them, and the grid to maximize the benefits of the DG units. Smart grids and modern electronic devices require high standards of power quality, especially voltage quality. In this paper, a new methodology is presented to improve the voltage quality and power factor in smart grids. This method depends on using voltage variation and admittance values as inputs of a controller that controls the reactive power generation in all DG units. The results show that the controller is efficient in improving the voltage quality and power factor. Real data from an electrical network have been used in the simulation model in MATLAB Simulink to test the new approach
    corecore