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Abstract. The HADES spectrometer currently operating on the beam of SIS18 accelerator in 

GSI will be moved to a new position in the CBM cave of the future FAIR complex. 

Electromagnetic calorimeter (ECAL) will enable the HADES@FAIR experiment to measure 

data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeV on 

the beam of the new accelerator SIS100. Calorimeter will be based on 978 massive lead glass 

modules read out by photomultipliers and a novel front-end electronics. Secondary gamma 

beam with energies ranging from 81 MeV up to 1399 MeV from MAMI-C Mainz facility was 

used to verify selected technical solutions. Relative energy resolution was measured using 

modules with three different types of photomultipliers. Two types of developed front-end 

electronics as well as energy leakage between neighbouring modules under parallel and 

declined gamma beams were studied in detail. 
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1.  Introduction – HADES experiment 

The HADES detector (High Acceptance DiElectron Spectrometer) is focused on precise measurement 

of electron-positron pairs coming from the high energy interactions. A wide range of reactions ranging 

from proton – proton, pion – proton, pion - nucleus up to gold on gold [1] collisions were examined in 

the past decade. HADES is currently operating on the beamline of SIS18 accelerator at GSI 

Darmstadt, Germany. The current setup consists of a diamond start detector (START), Ring Imaging 

Cherenkov detector (RICH), four layers of multiwire drift chambers (MDC), a superconducting 

toroidal magnet (ILSE), time of flight walls from resistive plate chambers (RPC) and plastic 

scintillators (TOF), pre-shower detector (SHOWER) and Forward Wall detector [2].   

Within the international project FAIR being built next to GSI, a brand new accelerator SIS100 will 

start to deliver heavy ion beams after 2018. The Hades spectrometer will be moved to a newly build 

cave shared with the CBM experiment and plans to continue in di-electron mass spectra measurements 

with beams of accelerated protons up to 10 GeV and heavier ions up to 8 AGeV. 

2.  Motivation and limits for a build-up of calorimeter 

The electromagnetic calorimeter (ECAL) will extend the HADES experimental possibilities in several 

directions. First of all, the ECAL will enable measurement of gamma photons from various decays of 

mesons or neutral (1405) and (1385) resonances. The ECAL will also improve electron/pion 

separation at large momenta over 400 MeV/c (at lower momenta sufficient electron/hadron 

identification is provided by the RICH, RPC and TOF detectors). 

Basic design of the ECAL was given by the HADES geometry – six separate sectors covering 

almost full azimuthal angle and polar angle 18° to 45°, more detailed description in [3]. Lead glass 

was loaned from the OPAL collaboration from the former endcup detector [4], so the size of the 

modules is fixed. More than 600 pieces of 1.5” EMI 9903KB photomultipliers were obtained from 

former MIRAC experiment [5]. 

3.  ECAL module 

Each module will consist of 92x92x420 mm
3
 lead glass crystal. The glass is of CEREN 25 type with 

density of 4.06 g/cm
3
 (weight of a single glass crystal is 14.4 kg). More details on glass properties can 

be found in [4]. Lead glass will be wrapped in white TYVEK paper 1060B, Cherenkov light will be 

read out by a photomultiplier (PMT). Beside the available 1.5” EMI PMTs a new 3” Hamamatsu 

R6091 PMTs are being bought to cover the missing number of pieces. The high price of new 3” PMTs 

invoked a study of possible use of 1” Hamamatsu R8619 PMTs . Photomultipliers will be shielded 

against residual magnetic field using a magnetic shielding. Each module will be also equipped with an 

optical fiber of CERAMOPTEC multimode type, which will guide well defined light pulses for 

stability and monitoring purposes directly to the glass. The module will be held together by a brass can 

with a wall thickness of 0.45 mm and an aluminum closing at the end. More information about the 

module layout can be found in [3]. 

4.  Beam tests 

Two beam tests of ECAL modules were already performed in the past. In September 2009, a gamma 

beam at MAMI Mainz was used to measure energy resolution of ECAL modules equipped with 

different light collector and reflector configurations. Modules with silver Mylar foil, white paint and 

Tyvek paper were tested. Light collector from the same lead glass placed between the glass and 1.5” 

EMI photomultiplier was also tested, but does not resulted in significantly better results. An 

electron/pion separation power was measured using a secondary e
-
/

-
 beam from T10 beam line at 

CERN in May 2010. More details about both two tests can be found in [3] and [6]. 

4.1.  Motivation for a new beam test 

Only measurements with cosmics muons and LED monitoring pulses were done since the two beam 

tests of ECAL modules. To conclude all laboratory tests and verify selected technical solutions, a new 
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gamma beam test at MAMI-C Mainz was proposed. Main tasks of this test were measurement of 

relative energy resolution of modules with different PMT sizes, test the novel front-end boards, which 

were not tested with real beam data before, and to study energy leakage between neighboring modules. 

4.2.  Experiment layout 

A new beam test of calorimeter modules and read-out concepts was performed at Institute für 

Kernphysik, Johannes Gutenberg Universität Mainz. Primary electron beam of 1508.4 MeV was 

directed to a copper target, energy of produced photons was determined using the method of tagged 

electrons in dedicated TAGGER [7] detector in MAMI A2 hall. Recoiled electrons from the copper 

target were bended in a magnetic field of 1.83204T inside the TAGGER and detected by a set of 

scintillation detectors. The Tagger has 352 detector channels representing photon energies from 1401 

MeV down to 81 MeV. For the ECAL measurements only eight channels were selected according to 

the table 1.  

 

Table 1. Selected TAGGER channels and corresponding photon energies. 

 

Tagger channel E Low (MeV) E High (MeV) E Mean (MeV) E Bite (MeV) 

2 1398.322 1400.327 1399.325 2.005 

66 1216.127 1219.411 1217.769 3.284 

121 1030.452 1034.414 1032.433 3.962 

170 841.208 845.549 843.379 4.341 

210 675.710 680.453 678.081 4.743 

261 458.898 463.720 461.309 4.821 

306 268.440 273.348 270.894 4.907 

352 78.992 83.746 81.369 4.754 

 

Four ECAL modules were placed on a movable platform 1m behind the tagger shielding. Gamma 

beam was shaped using collimators of 2mm diameter placed inside the tagger shielding. The beam 

spot on the module front surface was approximately 6 mm.  

One ECAL module was equipped with 1.5” PMT (same module as in previous beam tests at 

MAMI and CERN was used, so a direct comparison of results is possible). Two modules were 

equipped with 3” PMTs and last module contained 1” PMT. High voltage for the photomultipliers was 

tuned to get the same output amplitude on cosmic muons for all three types of photomultipliers. 

4.3.  Comparison of different read-out boards 

To have an independent ADC measurement, a standard CAEN DT5742 digitizer was used. This 

CAEN ADC stores 1024 values in a 1 s window for each of the 16 input channels. Output from the 

four ECAL modules were read by the first four ADC channels. The 8 trigger signals were put to the 

last eight ADC channels and also stored to the data. Common trigger signal for starting the read-out 

was produced as an OR of the individual eight trigger signals, the lowest (and the most frequent) 

energy was downscaled four times, the second lowest energy was downscaled two times. Active 

trigger signal representing corresponding gamma energy in each event was determined in the off-line 

analysis of the last eight ADC channels. Both direct pulses from PMTs and pulses shaped in MA8000 

shaper with shaping time of 1 s (production of GSI Darmstadt) were collected. The Rhode&Schwarz 

oscilloscope RTO 1044 with histogramming function was used for high resolution pulse storage and 

amplitude measurement (analog to CAEN ADC device). Stored pulse shapes were compared to pulses 

collected in measurements with cosmic muons and LED monitoring systems and they were found to 

be identical. Relative energy resolution of “Cracow“ and PaDiWa Amps readout boards was measured 

and it is comparable in the full energy range, see Figure 1. Energy resolution is slightly better in 
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comparison with the MA8000 + CAEN setup. This was caused by former optimizing of both two 

readout boards on the PMT pulses. 

 
Figure 1. Relative energy resolution measured with the standard CAEN ADC and novel front-end 

boards “Cracow” and PaDiWa Amps. Data are measured using the module with 1.5” photomultiplier 

(left) and 3” photomultiplier (right). 

4.4.  Relative energy resolution of modules with different photomultipliers 

As already mentioned in the section 3, three types of PMTs with different size were under 

considerations. Energy resolution with all three types of modules was intensively measured using 

cosmic muons and LED induced signals in the past ([3] or [6]), but real beam data were missing to 

make the final decision. Using different gamma beam energies at MAMI Mainz and three different 

types of pulse processing systems we got a decisive data set.  

Module with 1.5” as well as with 3” PMT showed comparable energy resolution (5.8% at 1 GeV 

photon with 1.5” EMI and 5.5% with 3” Hamamatsu), please see Figure 3 - left. Module with 1” PMT 

had worse relative energy resolution by ~ 1.6%. Moreover, the 1” PMT has to work at higher input 

voltage to compensate for lower output amplitudes. At this voltage, the response of the PMT starts to 

be nonlinear, see Figure 2 left. Dependence of relative energy resolution on high voltage supplied to 

1” PMT and measured with shaper MA8000 and CAEN ADC are in Figure 2 - right. 

 

   
Figure 2. The (non)linear response of 1” Hamamatsu R8619 photomultiplier as a function of high 

voltage (left). Relative energy resolution of ECAL module equipped with 1” Hamamatsu R8619 

photomultiplier as a function of high voltage (right). Numbers behind the names stand for resolution 

with 1 GeV photons. 

4.5.  Energy leakage between the modules 

Two identical modules equipped with 3” PMTs were irradiated with gamma beam parallel with the 

module longitudinal axis. Three measurements were done with the beam position in the center of one 
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module, 2 cm from the center closer to the second module and 4 cm from the module center closer to 

the other module (only 0.7 cm from the module border). The same measurement was repeated also 

with a gamma beam declined by 6° and 12° from the longitudinal module axis. The Figure 3 - right 

shows only a modest deterioration of the relative energy resolution in dependence on the beam angle. 

 

 
Figure 3. Comparison of relative energy resolution for modules with PMTs of different size (left). 

Relative energy resolution of the ECAL module equipped with 3” PMT with respect to the various 

declination of the incident photon (combination of measurements with different angle) (right).  

5.  Summary 

Electromagnetic calorimeter ECAL is being built to enhance experimental possibilities and physics 

program of the HADES experiment. The ECAL will enable to measure gamma photons coming from 

various neutral particle decays. 

Gamma beam test at MAMI-C Mainz showed that both two novel front-end boards have 

comparable relative energy resolution and are able to operate under real beam conditions. The ECAL 

modules equipped with 1.5” and 3” photomultipliers deliver similar relative energy resolution, 

whereas the module with 1” photomultiplier gives by 1.6% worse energy resolution and non-linear 

response.  

Energy leakage between the neighbour modules was tested with parallel and declined beams. 

Energy of original photon was successfully recovered as a sum of energies deposited in each of the 

modules. Some part of the original energy was lost only in the case of parallel gamma beam hitting 

close to module boarder.  

Design of single ECAL module was settled and successfully verified in beam tests. Mass 

production of modules and final setup of the calorimeter depends on the completion of the CBM cave, 

which is planned beyond the year 2018. 
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