506 research outputs found

    Quantum incompressibility of a falling Rydberg atom, and a gravitationally-induced charge separation effect in superconducting systems

    Get PDF
    Freely falling point-like objects converge towards the center of the Earth. Hence the gravitational field of the Earth is inhomogeneous, and possesses a tidal component. The free fall of an extended quantum object such as a hydrogen atom prepared in a high principal-quantum-number stretch state, i.e., a circular Rydberg atom, is predicted to fall more slowly that a classical point-like object, when both objects are dropped from the same height from above the Earth. This indicates that, apart from "quantum jumps," the atom exhibits a kind of "quantum incompressibility" during free fall in inhomogeneous, tidal gravitational fields like those of the Earth. A superconducting ring-like system with a persistent current circulating around it behaves like the circular Rydberg atom during free fall. Like the electronic wavefunction of the freely falling atom, the Cooper-pair wavefunction is "quantum incompressible." The ions of the ionic lattice of the superconductor, however, are not "quantum incompressible," since they do not possess a globally coherent quantum phase. The resulting difference during free fall in the response of the nonlocalizable Cooper pairs of electrons and the localizable ions to inhomogeneous gravitational fields is predicted to lead to a charge separation effect, which in turn leads to a large repulsive Coulomb force that opposes the convergence caused by the tidal, attractive gravitational force on the superconducting system. A "Cavendish-like" experiment is proposed for observing the charge separation effect induced by inhomogeneous gravitational fields in a superconducting circuit. This experiment would demonstrate the existence of a novel coupling between gravity and electricity via macroscopically coherent quantum matter.Comment: `2nd Vienna Symposium for the Foundations of Modern Physics' Festschrift MS for Foundations of Physic

    Using Abrupt Changes in Magnetic Susceptibility within Type-II Superconductors to Explore Global Decoherence Phenomena

    Full text link
    A phenomenon of a periodic staircase of macroscopic jumps in the admitted magnetic field has been observed, as the magnitude of an externally applied magnetic field is smoothly increased or decreased upon a superconducting (SC) loop of type II niobium-titanium wire which is coated with a non-superconducting layer of copper. Large temperature spikes were observed to occur simultaneously with the jumps, suggesting brief transitions to the normal state, caused by en masse motions of Abrikosov vortices. An experiment that exploits this phenomenon to explore the global decoherence of a large superconducting system will be discussed, and preliminary data will be presented. Though further experimentation is required to determine the actual decoherence rate across the superconducting system, multiple classical processes are ruled out, suggesting that jumps in magnetic flux are fully quantum mechanical processes which may correspond to large group velocities within the global Cooper pair wavefunction.Comment: 13 pages, 4 figures, part of proceedings for FQMT 2011 conference in Prague, Czech Republi

    Can a charged ring levitate a neutral, polarizable object? Can Earnshaw's Theorem be extended to such objects?

    Get PDF
    Stable electrostatic levitation and trapping of a neutral, polarizable object by a charged ring is shown to be theoretically impossible. Earnshaw's Theorem precludes the existence of such a stable, neutral particle trap.Comment: 11 pages, 1 figur

    A strongly magnetized pulsar within grasp of the Milky Way's supermassive black hole

    Full text link
    The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A*. Young, massive stars within 0.5 pc of SgrA* are evidence of an episode of intense star formation near the black hole a few Myr ago, which might have left behind a young neutron star traveling deep into SgrA*'s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. Thanks to a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4+/-0.3 arcsec from SgrA*, and refine the source spin period and its derivative (P=3.7635537(2) s and \dot{P} = 6.61(4)x10^{-12} s/s), confirmed by quasi simultaneous radio observations performed with the Green Bank (GBT) and Parkes antennas, which also constrain a Dispersion Measure of DM=1750+/-50 pc cm^{-3}, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ~0.07-2 pc from SgrA*. Simulations of its possible motion around SgrA* show that it is likely (~90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region, might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.Comment: ApJ Letters in pres

    KRAS-specific inhibition using a DARPin binding to a site in the allosteric lobe.

    Get PDF
    Inhibiting the RAS oncogenic protein has largely been through targeting the switch regions that interact with signalling effector proteins. Here, we report designed ankyrin repeat proteins (DARPins) macromolecules that specifically inhibit the KRAS isoform by binding to an allosteric site encompassing the region around KRAS-specific residue histidine 95 at the helix α3/loop 7/helix α4 interface. We show that these DARPins specifically inhibit KRAS/effector interactions and the dependent downstream signalling pathways in cancer cells. Binding by the DARPins at that region influences KRAS/effector interactions in different ways, including KRAS nucleotide exchange and inhibiting KRAS dimerization at the plasma membrane. These results highlight the importance of targeting the α3/loop 7/α4 interface, a previously untargeted site in RAS, for specifically inhibiting KRAS function

    On Pulsar Distance Measurements and their Uncertainties

    Get PDF
    Accurate distances to pulsars can be used for a variety of studies of the Galaxy and its electron content. However, most distance measures to pulsars have been derived from the absorption (or lack thereof) of pulsar emission by Galactic HI gas, which typically implies that only upper or lower limits on the pulsar distance are available. We present a critical analysis of all measured HI distance limits to pulsars and other neutron stars, and translate these limits into actual distance estimates through a likelihood analysis that simultaneously corrects for statistical biases. We also apply this analysis to parallax measurements of pulsars in order to obtain accurate distance estimates and find that the parallax and HI distance measurements are biased in different ways, because of differences in the sampled populations. Parallax measurements typically underestimate a pulsar's distance because of the limited distance to which this technique works and the consequential strong effect of the Galactic pulsar distribution (i.e. the original Lutz-Kelker bias), in HI distance limits, however, the luminosity bias dominates the Lutz-Kelker effect, leading to overestimated distances because the bright pulsars on which this technique is applicable are more likely to be nearby given their brightness.Comment: 32 pages, 1 figure, 2 tables; Accepted for publication in the Astrophysical Journa

    The magnetized medium around the radio galaxy B2 0755+37: an interaction with the intra-group gas

    Full text link
    We explore the magneto-ionic environment of the isolated radio galaxy B2 0755+37 using detailed imaging of the distributions of Faraday rotation and depolarization over the radio source from Very Large Array observations at 1385,1465 and 4860 MHz and new X-ray data from XMM-Newton. The Rotation Measure (RM) distribution is complex, with evidence for anisotropic fluctuations in two regions. The approaching lobe shows low and uniform RM in an unusual `stripe' along an extension of the jet axis and a linear gradient transverse to this axis over its Northern half. The leading edge of the receding lobe shows arc-like RM structures with sign reversals. Elsewhere, the RM structures are reasonably isotropic. The RM power spectra are well described by cut-off power laws with slopes ranging from 2.1 to 3.2 in different sub-regions. The corresponding magnetic-field autocorrelation lengths, where well-determined, range from 0.25 to 1.4 kpc. It is likely that the fluctuations are mostly produced by compressed gas and field around the leading edges of the lobes. We identify areas of high depolarization around the jets and inner lobes. These could be produced by dense gas immediately surrounding the radio emission containing a magnetic field which is tangled on small scales. We also identify four ways in which the well known depolarization (Faraday depth) asymmetry between jetted and counter-jetted lobes of extended radio sources can be modified by interactions with the surrounding medium.Comment: 16 pages, 13 figures, accepted for publication in MNRAS. Full resolution paper available at: ftp://ftp.ira.inaf.it/pub/outgoing/guidetti/ Subjects: Cosmology and Extragalactic Astrophysics (astro-ph.CO

    Cultural Orientations of sport managers

    Get PDF
    Various interpretations of sport management are cultural constructs underpinned by core assumptions and values held by members of professional communities. Sport managers world wide share common problems, but differ in how they resolve them. These universal differences emerge from the relationships they form with other people, and their attitude to time, activities and the natural environment. This paper examines the role of sport managers’ cultural orientations in the interpretation and practice of sport management. Using a multiple dimension model (Hampden-Turner and Trompenaars, 2000) it sketches the cultural profiles of fifteen sport managers from seven countries. A combination of methods was employed including questionnaires, interviews and participant observation. It is contended that the culture of sport management concerns a social process by which managers get involved in reconciling seven fundamental cultural dilemmas in order to perform tasks and achieve certain ends. Thus, a knowledge of the cultural meaning of sport management in a particular country would equip sport managers with a valuable tool in managing both the cultural diversity of their own work forces and in developing appropriate cross-cultural skills needed for running international events, marketing campaigns, sponsorship deals and joint ventures
    • …
    corecore