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Abstract Freely falling point-like objects converge toward the center of the Earth.
Hence the gravitational field of the Earth is inhomogeneous, and possesses a tidal
component. The free fall of an extended quantum mechanical object such as a hydro-
gen atom prepared in a high principal-quantum-number state, i.e. a circular Rydberg
atom, is predicted to fall more slowly than a classical point-like object, when both ob-
jects are dropped from the same height above the Earth’s surface. This indicates that,
apart from transitions between quantum states, the atom exhibits a kind of quantum
mechanical incompressibility during free fall in inhomogeneous, tidal gravitational
fields like those of the Earth.

A superconducting ring-like system with a persistent current circulating around
it behaves like the circular Rydberg atom during free fall. Like the electronic wave-
function of the freely falling atom, the Cooper-pair wavefunction is quantum me-
chanically incompressible. The ions in the lattice of the superconductor, however, are
not incompressible, since they do not possess a globally coherent quantum phase.
The resulting difference during free fall in the response of the nonlocalizable Cooper
pairs of electrons and the localizable ions to inhomogeneous gravitational fields is
predicted to lead to a charge separation effect, which in turn leads to a large Coulomb
force that opposes the convergence caused by the tidal gravitational force on the su-
perconducting system.
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A “Cavendish-like” experiment is proposed for observing the charge separation
effect induced by inhomogeneous gravitational fields in a superconducting circuit.
The charge separation effect is determined to be limited by a pair-breaking process
that occurs when low frequency gravitational perturbations are present.

Keywords Quantum mechanics · Rydberg atom · Gravity · Equivalence principle ·
Uncertainty principle

1 Introduction

Experiments at the frontiers of quantum mechanics and gravity are rare. We would
like to explore in this essay, in honor of Danny Greenberger and Helmut Rauch, situa-
tions which could lead to such experiments. The key is to understand the phenomenon
of “quantum incompressibility” of macroscopically coherent quantum matter in the
presence of inhomogeneous, tidal gravitational fields, such as the Earth’s. See Fig. 1.

As an example of “quantum incompressibility” during free fall of an extended
quantum object, let us first consider the single electron of a circular Rydberg atom
[1] (ignoring electron spin), which is prepared in the state

|n, l = n − 1, ml = n − 1〉 , (1)

where n is the principal quantum number, which is large, i.e., n � 1, and l = n − 1
is the maximum possible orbital angular momentum quantum number for a given n,
and ml = l = n − 1 is the maximum possible azimuthal quantum number for a given
l, i.e., the “stretched” state. The z axis has been chosen to be the local vertical axis
located at the center of mass of the atom. Then the wavefunction of this electron in
polar coordinates (r, θ,φ) of the hydrogenic atom in this state is given by [2, p. 253]

�n,n−1,n−1(r, θ,φ) = Nn,n−1,n−1(r sin θeiφ)n−1 exp

(
− r

na0

)
, (2)

Fig. 1 Two nearby, freely falling, point-like objects dropped from the same height above the Earth’s
surface follow converging trajectories that are inclined at a slight angle θ with respect to the vertical plumb
line equidistant between them. According to a distant inertial observer, the radial convergence of these
objects’ trajectories towards the center of the Earth causes them to undergo small horizontal components
of acceleration g′ of the radial acceleration g. These components are equivalent to a tidal gravitational
force that, in a Newtonian picture, causes the two objects to converge toward one another
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Fig. 2 A circular Rydberg atom
in the state |n, l = n − 1,
ml = n − 1〉 has a strongly
peaked, ring-like probability
distribution, i.e., an “electron
cloud,” indicated by the heavy
black loop. Currents in this state
lead to a magnetic field B,
indicated by the directional
loops. The z axis is the local
vertical axis

where Nn,n−1,n−1 is a normalization constant.
The probability density associated with this wavefunction has the form of a

strongly peaked distribution which lies on the horizontal (x, y) plane, in the shape
of a ring of radius

an = n2 �
2

me2
= n2a0, (3)

where a0 is the Bohr radius. Thus one recovers the Bohr model of the hydrogen atom
in the correspondence-principle limit of large n. This ring-like probability distribution
is illustrated in Fig. 2.

The question we would like to address here is this: How does the size of this atom
change with time as it undergoes free fall in Earth’s inhomogeneous, tidal gravita-
tional field?

2 An Analogy

The magnetic moment of the Rydberg atom in the state (2) is quantized, and is given
by

μn = n
e�

2m
= nμB, (4)

where μB is the Bohr magneton and n is an integer.
The electron current density in the ring-like structure of a circular Rydberg atom

in Fig. 2 is similar to that of a persistent supercurrent of Cooper pairs in a supercon-
ducting ring with a quantized flux given by

�n = n�0 = n
h

2e
, (5)

where �0 is the flux quantum and n is an integer. The quantum incompressibility of
the ring-like structure of a circular Rydberg atom, and the quantum incompressibility
of the Cooper pairs of electrons in a superconducting ring, both arise from the same
quantum mechanical principle, namely, the single-valuedness of the wavefunction
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after one round trip around the ring, which follows from the condition
∮

ring

∇ϕ · dl = �ϕ = 2πk, (6)

where ϕ is the phase of the wavefunction, and k is an integer corresponding to the
state under consideration. Another necessary condition for quantum incompressibil-
ity is the existence of a substantial energy gap separating the kth state from adjacent
states of the system.

The analogy between the Rydberg atom and the superconducting ring is not a
perfect one, since the selection rules for allowed transitions between adjacent states
will be different in the two cases. The transitions n → n − 1 and n → n + 1 are
electric-dipole allowed for the Rydberg atom, whereas the transitions n → n − 1
and n → n + 1 between adjacent flux-trapping states of the superconducting ring are
highly forbidden. This is because a macroscopic number of identical Cooper pairs
of electrons must all simultaneously jump from a state with n� units to a state with
(n − 1)� units or with (n + 1)� units of angular momentum per electron pair. Hence
the persistent current of a superconducting ring is highly metastable, and does not
change with time, unless a macroscopic quantum transition occurs.

If the characteristic frequency of an external perturbation, such as that of the tidal
gravitational fields acting on the system during free fall in Earth’s gravity, is much
less than the smallest energy gap of an allowed transition divided by Planck’s con-
stant, then the system cannot make a transition (i.e., a “quantum jump”) out of its
initial state. Thus it must stay rigidly in its initial state. (For a Rydberg atom with
n � 100, this transition frequency lies in the gigahertz range, so that this assumption
is well satisfied.) The size of the circular Rydberg atom and the size of the persistent
currents of the superconducting ring will therefore remain constant in time during
perturbations arising from Earth’s tidal fields during free fall, apart from a sequence
of possible “quantum jumps” in a “quantum staircase,” though such transitions occur
only in highly unusual circumstances in the gravitational field of the Earth.

3 The Quantum Incompressibility of the Rydberg Atom

It has been previously shown [8] that the electron wavefunction of a hydrogen atom
will be altered by the presence of curvature. The Hamiltonian operator for such an
operator is given by

H = H0 + H1, (7)

where H0 is the unperturbed operator, and H1 is an interaction Hamiltonian due to
curvature. This interaction operator was shown to be

HP ≡ H1 = 1

2
meR0l0mxlxm, (8)

where me is the mass of the electron, R0l0m are components of the Riemann curva-
ture tensor, and xl and xm are components of the position operator of the electron.
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Equation (8) is obtained by taking the nonrelativistic limit of the Dirac equation em-
bedded into curved spacetime [9, 10]. The subscript P is used for Parker, the author
of the papers referenced here, and his index notation is adopted as well. Superscripts
l and m are contravariant indices satisfying l,m = 1,2,3, and should not be confused
with quantum number l or mass m. The index 0 refers to the time components. Greek
indices are spacetime indices, and Latin indices are space indices only. The Einstein
summation convention is used here as well, in which repeated indices are summed
over all possible values.

Expressing these components of the Riemann tensor in terms of the gravitational
scalar potential, which satisfies

−∇� = g, (9)

one can show that near the surface of the earth, the interaction Hamiltonian is given
by

HP = meg

2RE

(
x2 + y2 − 2z2

)
(10)

in Cartesian coordinates, or

HP = meg

2RE

[
r2

(
3 sin2 θ − 2

)]
(11)

in spherical coordinates. It is worth noting that this interaction Hamiltonian is pro-
portional to the second-degree, zero-order spherical harmonic Y 0

2 . Thus, this interac-
tion Hamiltonian represents a rank-2 angular momentum operator, since its angular
dependence is quadrupolar [11]. One immediate consequence is that, by the Wigner-
Eckart theorem, there will be no effect on a hydrogen atom in a state with zero angular
momentum (i.e. where l = 0), to first order, through this interaction Hamiltonian.

The energy shift associated with HP is given by

�EP = 〈�|HP |�〉
〈�|�〉 . (12)

Taking the expectation values with respect to the stretched-state wavefunction in (2),
one obtains

�EP ≈ meg

2RE

a2
n = mega2

0

2RE

n4, (13)

where the approximation is valid for large values of principal quantum number n.

In addition to the energy shift derived from the interaction Hamiltonian HP , one
can use DeWitt’s minimal coupling rule, which is associated with an asymptoti-
cally flat coordinate system, unlike the operator HP , which is associated with the
transverse-traceless gauge often used in general relativity. Let us show that quan-
tum incompressibility is predicted to occur in a circular Rydberg atom, starting from
DeWitt’s minimal coupling rule. The DeWitt Hamiltonian for a freely falling hydro-
genic atom, such as a circular Rydberg atom in presence of weak electromagnetic and
gravitational fields, is given in SI units by

H = 1

2m
(p − eA − mh)2 + e2

4πε0r
, (14)
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where A is the electromagnetic vector potential, and h is DeWitt’s gravitational vector
potential [3].

Before performing any quantitative analyses, it is stated here beforehand that while
the Hamiltonian in (14) applies to the entire atom, one can apply a center-of-mass
and relative coordinates transformation to the unperturbed Hamiltonian, treating the
interaction Hamiltonians containing the vector potentials as perturbations. The fact
that the proton has a much larger mass and is located at a much smaller distance from
the center of mass causes the proton contributions to the energy shifts to be negligible
compared to those of the electron contributions.

The interaction Hamiltonian for the A · A term (the “Landau diamagnetism term”
[4]) is given by1

HA·A = e2

2me

A · A. (16)

In the symmetric gauge, where A = 1
2 B × r = − 1

2B(yex − xey), for B = Bez, and
where ex, ey, and ez are the unit vectors along the x, y, and z axes, respectively, this
yields

HA·A = e2B2

8me

(x2 + y2), (17)

in Cartesian coordinates, or

HA·A = e2B2

8me

r2 sin2 θ (18)

in spherical coordinates, where θ is the azimuthal angle. The energy shift in first-
order perturbation theory resulting from the presence of the A field is given by

�EA·A = e2B2

8me

〈�nlml
|r2 sin2 θ |�nlml

〉. (19)

Recalling that the wavefunction for the circular Rydberg state is given by (2), the
expectation value in (19) becomes

〈
�

∣∣r2 sin2 θ
∣∣�〉

〈�|�〉 ≈ (n2a0)
2 = a2

n (20)

1In addition to the A · A and the h · h terms, there are also A · p and h · p terms in the perturbation Hamil-
tonian. Since the A · A term is quadratic in A, and the A · p is linear, we must compute the A · p terms out
to second order. The first-order A · p term gives rise to the linear Zeeman splitting effect,

�EA·p = �eB

2me
ml, (15)

while the second-order term is zero due to the orthogonality of the atomic wavefunction states (since the
wavefunctions are eigenstates of the A · p operator). The Hermicity of the h and p operators causes the
{h,p} terms to be zero in both first and second order. For details, see [5].
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for large values of the principal quantum number n, where n � 1. It follows that the
first-order energy shift of the atom in the presence of a magnetic field is

�EA·A ≈ e2a2
n

8me

B2. (21)

This result implies that, in first-order perturbation theory, the size of the atom does
not change in the presence of the applied DC magnetic field, in the sense that the
root-mean-square transverse size of the atom, which is given by

an|rms =
√

〈�|r2 sin2 θ |�〉 = an (22)

does not change with time, to first order, during the application of the DC magnetic
field. Moreover, the wavefunction �n,n−1,n−1 remains unaltered in first-order pertur-
bation theory in the presence of a weak applied field. Furthermore, this is still true for
applied magnetic fields which vary sufficiently slowly in time, so that no transitions
(i.e., “quantum jumps”) can occur out of the initial state of the system �n,n−1,n−1.
The concept of the “quantum incompressibility” of a Rydberg atom is thus a valid
concept during the application of sufficiently weak, and sufficiently slowly varying,
magnetic fields.

The energy shift given by (21) causes the atom to become a low-field seeker in
inhomogeneous magnetic fields through the relationship

(
FA·A

)
n

= −∇ (�EA·A)n ≈ −e2a2
n

8me

∇(B2), (23)

where (FA·A)n is the force on the atom in the ring-like state (2) in the presence of an
inhomogeneous magnetic field.

Next, let us consider the more interesting case of when weak tidal gravitational
fields are present without any accompanying electromagnetic fields, i.e., when h �= 0
and A = 0. As before, the atom is initially prepared in the state given by (2) before
it is released into free fall in the Earth’s inhomogeneous gravitational field. The z

axis, which goes through the center of mass of the atom, is chosen to be the local
vertical axis of the Earth’s field. The horizontal tidal gravitational fields of the Earth
experienced during free fall by the atom, as observed in the coordinate system of a
distant inertial observer, where the (x, y) plane is the local horizontal plane, will be
given by

h(x, y, t) = v(x, y, t) = g′t = gt

RE

(exx + eyy), (24)

where v(x, y, t) is the velocity of a freely falling, point-like test particle located at
(x, y) and observed at time t by the distant inertial observer [7], g′ is the horizontal
component of Earth’s gravitational acceleration arising from the radial convergence
of free-fall trajectories towards the center of the Earth as seen by this observer (see
Fig. 1), RE is the radius of the Earth, and ex and ey are respectively the unit vectors
pointing along the x and the y axes, in this observer’s coordinate system. In (24) we
have assumed that the horizontal excursions of the electron in x and y are very small
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compared to the Earth’s radius. The interaction Hamiltonian for the h · h term in (14)
is given by

Hh·h = m

2
h · h = meg

2t2

2R2
E

(r2 sin2 θ). (25)

Therefore, the shift in energy of the atom in the circular Rydberg state, due to the
Earth’s tidal fields given by (24), is given in first-order perturbation theory by

�Eh·h = meg
2t2

2R2
E

〈�| r2 sin2 θ |�〉
〈�|�〉 ≈ mea

2
n

2R2
E

g2t2 (26)

for large values of n, where n � 1. Once again, since the expectation value in (26)
is the mean-square transverse size of the atom, this implies that the size of the atom
does not change during free fall, according to first-order perturbation theory. In other
words, the atom is “quantum incompressible” in the presence of the inhomogeneous,
tidal fields of the Earth, just like in the case of the atom in the presence of an applied
DC magnetic field, as long as transitions (i.e., “quantum jumps”) out of the initial
quantum state �n,n−1,n−1 cannot occur. This conclusion is valid assuming that the
characteristic frequency of the applied tidal fields is much less than the gap frequency
(i.e., the energy gap divided by Planck’s constant, which is typically on the order of
gigahertz for n ∼ 100) corresponding to a quantum transition from the nth state to
the nearest adjacent allowed states, and assuming that the tidal gravitational field of
the Earth is sufficiently weak.

In the gravitational case, just as in the magnetic case, the energy-level shift caused
by the tidal perturbations arising from the Earth’s inhomogeneous gravitational field,
leads to a force on the atom. This force causes the atom to become a low-field seeker
in the inhomogeneous gravitational field of the Earth through the relationship

(
Fh·h

)
n

= −∇ (�Eh·h)n ≈ −1

2
mea

2
nt

2∇
(

g2

R2
E

)
. (27)

Thus a hydrogen atom in a circular Rydberg state, which is an extended quantum
object, will fall slightly more slowly than a point-like classical test particle which is
simultaneously released into free fall along with the atom near the center of mass of
the atom in Earth’s inhomogeneous field.

The gravitational, Landau-like energy shifts of the atom given by (26) are much
too small to be measured directly in Earth-bound experiments using current tech-
nology, but in principle they can be measured spectroscopically by monitoring the
frequencies of transitions between adjacent Rydberg states, for example, in a satel-
lite laboratory which is in a highly elliptical orbit around the Earth. It is therefore a
genuine physical effect.

One might be tempted to say that the force given by (27) questions the universal
applicability of the equivalence principle, i.e., the universality of free fall. But it must
be kept in mind that the equivalence principle applies strictly to point objects only,
inside of which tidal effects can be neglected. This is manifestly not the case for the
extended quantum systems being considered here.
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4 A Superconducting Circuit Consisting of Two Cubes Joined Coherently by
Two Parallel Wires

The analogy between the Rydberg atom and superconducting ring suggests a simple
experiment to test the idea of “quantum incompressibility” during free fall, which can
be performed in an ordinary laboratory. Consider a horizontal system consisting of
two superconducting cubes joined by two parallel superconducting wires to form a
superconducting circuit. See Fig. 3.

When a coherent quantum connection between the two cubes is not present (due,
say, to the effect of heating coils wrapped around the midsections of both wires which
drive them to a normal state by heating them above their transition temperature, so
that the coherent quantum connection between the cubes is thereby destroyed), the
centers of masses of the two spatially separated cubes, which will have decohered
with respect to each other, will follow the converging free-fall trajectories shown in
Fig. 1, which are inclined at a slight angle θ with respect to the vertical plumb line
passing through the midpoint “c.m.”, with

θ ≈ L

RE

, (28)

where L is separation of the two cubes, which is also their dimensions (thus cho-
sen for simplicity), and RE is the radius of the Earth. It should be noted that the
decoherence, and therefore the spatial separability, of entangled states arising from
perturbations due to the environment [6], is a necessary precondition for the applica-
bility of the equivalence principle [7], so that here the universality of free fall can be
applied to the free-fall trajectories of the disconnected superconducting cubes.2

Fig. 3 Two superconducting cubes, SC 1 and SC 2, which are undergoing free fall in Earth’s inhomoge-
neous gravitational field, are connected by means of two thin superconducting wires, which establishes
quantum coherence throughout the system, and makes it a single quantum entity with a center of mass
(“c.m.”) located in the middle. A persistent current through the wires traps a B field inside this supercon-
ducting circuit, much like in the circular Rydberg atom. All dimensions of the cubes and the length of the
wire are given by the same distance L. The z axis denotes the local vertical axis passing through “c.m.”

2The general relativistic concept of a “ geodesic” is fundamentally that of a “ classical trajectory.” As
Bohr has taught us, however, the very concept of a “ classical trajectory” loses all physical meaning under
circumstances in which the uncertainty principle destroys all such classical trajectories. This is the case
here for the free-fall trajectories of Cooper pairs inside the superconducting system, since these electron
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When a coherent connection is present between the two cubes, they will become a
single, macroscopic quantum object like the freely-falling Rydberg atom. The Cooper
pairs of electrons of the system will then remain motionless with respect to the mid-
point “c.m.”, since their macroscopic wavefunction corresponds to a zero-momentum
eigenstate relative to c.m., and therefore, by the uncertainty principle, the electrons
are completely nonlocalizable within the entire, coherently connected two-cube sys-
tem. The Cooper pairs of electrons, like the electron in Rydberg atom, will then ex-
hibit quantum incompressibility during free fall. This follows from the fact that the
mean-squared size of the coherent electrons of the entire superconducting system re-
mains unchanged in response to the tidal gravitational fields of the Earth, according
to first-order perturbation theory.

However, the ions, which have undergone decoherence due to the environment [6,
7], are completely localizable, and therefore, by the equivalence principle, will want
to follow the free-fall trajectories that converge onto the center of the Earth shown
in Fig. 1. By contrast, the Cooper pairs of electrons will remain coherent during
free fall, since they are protected from decoherence by the BCS energy gap [7], and
will therefore remain completely nonlocalizable, since they will remain in a zero-
momentum eigenstate. This difference in the motion of the ions and of the Cooper
pairs of electrons will then lead to the charge-separation effect indicated in Fig. 3, in
which the ions will be extruded through the innermost faces of the cubes, because of
the convergence of their radial trajectories that point towards the center of the Earth,
and in which the Cooper pairs of electrons, which resist this convergence, will be
extruded through the outermost faces of the cubes.

The Cooper pairs of electrons in the zero-momentum eigenstate, which remain at
rest rigidly with respect to the global c.m. of the entire, coherent two-cube system,
will therefore be displaced away from the ions by a distance �x on left face of the left
cube, and also on the right face of the right cube. The resulting charge configuration
can be approximated by a ball-and-stick model of two charged dumbbells shown in
Fig. 4.

On the one hand, the net Coulomb force between the two dumbbells in Fig. 4 is
given by

FCoulomb = α
Q2

4πε0L2
, (29)

Fig. 4 Ball with charges −Q and +Q are attached to rigid rods with lengths L to form two dumbbells,
which model the configuration of charges in Fig. 3. The two innermost charges, both of which are +Q,
are separated by a distance L. These two innermost charges dominate the Coulomb force between the two
dumbbells, so that the net force is a repulsive one

pairs will remain in a zero-momentum eigenstate during free fall when they are initially prepared in the
BCS ground state at the moment of release into free fall.
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where α is a pure number on the order of unity (this follows from dimensional con-
siderations, since L is the only distance scale in the problem).

On the other hand, the tidal gravitational force between the cubes in Fig. 3 is given
by

FTidal = Mg′, (30)

where M is the mass of the cube (which is mainly due to the ions), and

g′ = g sin θ ≈ g tan θ ≈ gθ ≈ gL/RE (31)

is the horizontal component of the acceleration due to Earth’s gravity acting on the
centers of the cubes, which is directed towards the midpoint c.m. of the two cubes.
Thus, in equilibrium,

FCoulomb = FTidal. (32)

The voltage difference between the two ends of a given dumbbell (which is a
model of the voltage difference between the opposite faces of a given cube) is given
by

V = β
Q

4πε0L
, (33)

where β is another pure number of the order of unity (again, this follows from di-
mensional considerations, since L is only distance scale in the problem). Substituting
the squared quantity Q2/L2 obtained from (33) into (29), one gets

α
Q2

4πε0L2
= α

(4πε0)
2V 2

(4πε0)β2
= 4πε0

α

β2
V 2

= Mg′ ≈ ρL3gθ ≈ ρg
L4

RE

. (34)

Solving for the voltage difference V , one obtains

V ≈
(

β2

α

ρgL4

4πε0RE

)1/2

= |β|√
α

VF-F, (35)

where the characteristic free-fall voltage scale VF-F for characteristic experimental
parameters (L = 1 cm, ρ = 104 kg/m3) is given by

VF-F =
(

ρgL4

4πε0RE

)1/2

∼ 1 Volt, (36)

which is experimentally interesting, given the reasonably large capacitances of the
two-cube system. (For the geometry of the dumbbells indicated in Fig. 4, the nu-
merical values of α = 11/18 and β = −2/3 are, as indicated earlier, on the order of
unity.)
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5 The “Cavendish-Like” Experiment

The order-of-magnitude estimate given above indicates that experiments are feasible.
An experiment was performed at Merced, in which a slowly time-varying, inhomo-
geneous, tidal gravitational field is produced by means of two piles of lead bricks
placed diametrically opposite each other on a slowly rotating, circular platform, as
the sources of the field. The two piles of bricks, which weigh approximately a ton,
will orbit slowly and symmetrically around a superconducting circuit similar to the
one shown in Fig. 3, which is suspended inside a dilution refrigerator above the center
of the rotating platform.

For simplicity, we consider each pendulum to have two support wires, as shown
in Fig. 5, so that the motion is constrained along one dimension.

The source masses will rotate around the dilution refrigerator containing the pen-
dula at approximately 1 rpm, and so the angular frequency is approximately ω = π

30
s−1. The gravitational forces on the pendula due to the source masses will thus be
periodic in time with a period of approximately 60 seconds (a 30-second period is
theoretically possible due to symmetry, but for systematic errors in the setup and de-
sign, we will assume 60 seconds). The magnitude of the gravitational forces will
vary according to Newton’s inverse-square law. In each instant in time, the forces
on the pendula can be calculated. Assuming that the angular frequency of the rotat-
ing source masses is sufficiently small, a quasi-static model can be implemented, in
which the system is in static equilibrium at any given time.

Figure 6 shows the system at an arbitrary instant in time where θ = ωt . The forces
F1 and F2 are gravitational forces exerted by the source masses. F3 is the gravitational
force exerted by the opposite pendulum. The separation distance between the two
pendula is s. Let the vertical faces of the source masses that are (roughly) oriented
radially have length a, the vertical faces facing the dilution refrigerators have length
b, and the heights have dimension c.

A differential mass element dM of the upper source mass in Fig. 6 exerts a dif-
ferential force on the right pendulum with magnitude (direction will be considered
separately) given by

|dF1| = Gm

x2 + y2 + z2
dM = Gmρ

x2 + y2 + z2
dV, (37)

Fig. 5 Pendula are supported
by two wires each. This
configuration causes motion
along a single axis, denoted by x

in the figure
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Fig. 6 The experimental setup
of the Cavendish-like
experiment. The figure shows a
snapshot of the dynamic system,
where the small displacements
of the pendula have, for the
moment, been neglected. The
coordinates x, y and z will vary
with the angle θ , and i, j and k
are unit basis vectors

where ρ is the density of the material (assumed to be uniform). Integrating this
expression, we obtain the total force exerted by the upper source mass, given by

|F1| = Gmρ

∫ c
2

− c
2

∫ s
2 sinωt+ b

2

s
2 sinωt− b

2

∫ R− s
2 cosωt+a

R− s
2 cosωt

dx dy dz

x2 + y2 + z2
. (38)

Similarly, the total force exerted on the right pendulum by the lower source mass in
Fig. 6 is given by

|F2| = Gmρ

∫ c
2

− c
2

∫ s
2 sinωt+ b

2

s
2 sinωt− b

2

∫ R+ s
2 cosωt+a

R+ s
2 cosωt

dx dy dz

x2 + y2 + z2
. (39)

The angle β subtended by vector F1 and the line joining the two pendula in Fig. 6
satisfies the equations

cosβ =
√√√√ (R + a

2 )2 cos2 ωt + s2

4 − s(R + a
2 ) cosωt

(R + a
2 )2 + s2

4 − s(R + a
2 ) cosωt

(40a)

sinβ = (R + a
2 ) sinωt√

(R + a
2 )2 + s2

4 − s(R + a
2 ) cosωt

(40b)

and the angle γ subtended by F2 and the line joining the two pendula in Fig. 6 satisfies
the equations

cosγ =
s

2R+a
+ cosωt√(

s
2R+a

+ cosωt
)2 + sin2 ωt

(41a)
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sinγ = sinωt√(
s

2R+a
+ cosωt

) + sin2 ωt

, (41b)

and thus the full expressions for the forces acting on the right pendulum in Fig. 6 are
given by

F1 = Gmρ

∫ c
2

− c
2

∫ s
2 sinωt+ b

2

s
2 sinωt− b

2

∫ R− s
2 cosωt+a

R− s
2 cosωt

dx dy dz

x2 + y2 + z2 (cosβi + sinβj) , (42)

F2 = −Gmρ

∫ c
2

− c
2

∫ s
2 sinωt+ b

2

s
2 sinωt− b

2

∫ R+ s
2 cosωt+a

R+ s
2 cosωt

dx dy dz

x2 + y2 + z2 (cosγ i + sinγ j) ,

(43)

assuming that the pendula and the centers of mass of the source masses are coplanar.
Recalling that the pendula are constrained to move along the axis parallel to the unit
vector i, the unconstrained components of the forces exerted by the source masses on
the right pendulum are given by

F1 = Gmρ cosβ

∫ c
2

− c
2

∫ s
2 sinωt+ b

2

s
2 sinωt− b

2

∫ R− s
2 cosωt+a

R− s
2 cosωt

dx dy dz

x2 + y2 + z2
, (44)

F2 = Gmρ cosγ

∫ c
2

− c
2

∫ s
2 sinωt+ b

2

s
2 sinωt− b

2

∫ R+ s
2 cosωt+a

R+ s
2 cosωt

dx dy dz

x2 + y2 + z2
. (45)

The force exerted by the left pendulum on the right pendulum is anti-parallel to i,
and its magnitude is given by

F3 = Gm2

s2
. (46)

Viewing the right pendulum from the side, the free body diagram can be pictured
as in Fig. 7.

Fig. 7 Force body diagram of
single pendulum
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Comparing the vertical and horizontal components of the vectors in Fig. 7, we
obtain an expression for the deflection magnitude dn, given by

dn ≈ �

mg
(F1 − F2 − F3) , (47)

where we have assumed dn to be small, so that (47) is explicit. The subscript n is
used for the case that the pendula are normal, so that both the ionic lattice and the
valence electron system follow the same local geodesics. F3 can be safely neglected
if the source masses are sufficiently large.

Let us now turn to the concept of charge separation within superconductors. Let
the pendula now be superconducting, and share a continuous superconducting con-
nection, so that the Cooper-pair wavefunction has a constant phase across both pen-
dula. If we assume that only the ionic lattice of the pendula are subject to the gravi-
tational forces of the source masses, a charge separation will ensue. For the moment,
let us assume that the Cooper pair wavefunction is completely rigid, and that the
superfluid will therefore remain motionless with respect to the center of mass of the
pendulum system, which lies approximately at the midpoint between the two pendula.
This charge separation will cause Coulomb forces both between the two pendula, and
within the pendula themselves. These forces must be taken into account to accurately
predict the motions of the ionic lattices, and the magnitude of the charge separation.

Figure 8 shows the pendula at an instant in time when the ionic lattices are pulled
outwards by the source masses. The charged faces of the pendula are modeled here
using point charges.

Summing the Coulombic forces that the left pendulum exerts on the ionic lattice
of the right pendulum in Fig. 8, it can be shown that the total Coulombic force is

FQ,d>0 ≈ −Q2

4πε0s2

[
L(2s + L)

(s + L)2

]
i, (48)

where we have ignored the charge extrusion distance d , since d is much smaller than
s and L. The Coulomb force on the ionic lattice of the right pendulum exerted by the
electron superfluid within the right pendulum, due to charge separation, is

Fc,d>0 ≈ − Q2

4πε0L2
i, (49)

where the same approximation has been used. The subscript d > 0 has been used
since (48) and (49) are only valid when the positively-charged ionic lattice is extruded

Fig. 8 Superconducting pendula under the influence of tidal forces that produce charge separation. The
physical dimension of the pendulum along the axis of the charge separation is given by L, and the cen-
ter-to-center distance between the pendula is given by s
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from the negatively-charged superfluid on the outer faces of the pendula. When the
signs of the charges are reversed, the forces on the ionic lattice of the right pendulum
can be found by making the substitution L → −L, so the general expression for the
Coulombic forces on the right pendulum are

FQ ≈ −Q2

4πε0s2

{
Lsgn(d)

[
2s + Lsgn(d)

]
[
s + Lsgn(d)

]2

}
i (50)

and

Fc ≈ −Q2sgn(d)

4πε0L2
i, (51)

where

sgn(d) =

⎧⎪⎨
⎪⎩

1, d > 0,

0, d = 0,

−1, d < 0.

(52)

Considering all forces on a single superconducting pendulum, we have a model
that is similar to that depicted in Fig. 7, but FQ and Fc are considered, in addition to∑3

i=1 Fi . For this case, we have

d ≈ �

mg

(
F1 − F2 − F3 − FQ − Fc

)
, (53)

where FQ and Fc are the magnitudes of the vectors defined in (50) and (51), respec-
tively.

The extruded charge Q depends on the extrusion length. Starting with

Q = 2ensV, (54)

where ns is the superconducting electron density, −2e is the Cooper pair charge, and
V is the extrusion volume. The current experimental design involves cylindrically-
shaped pendula, so (54) becomes

Q = 2ensπr2d, (55)

where r is the cylindrical radius of the sample. Thus,

d = Q

2ensπr2
, (56)

and it should be noted here that

sgn(d) = sgn(Q). (57)

Substitution of (56) and (57) into (53), we have
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Fig. 9 Predicted charge signal
as a function of time

Q = 2ensπr2�

mg

(
F1 − F2 − F3 − Q2sgn(Q)

4πε0s2

{
L[2s + Lsgn(Q)]
[s + Lsgn(Q)]2

}

− Q2sgn(Q)

4πε0L2

)
. (58)

An iterative numerical method was used to solve (58) for Q. It should also be noted
that the expressions for F1 and F2 were evaluated using numerical integration. A plot
of the expected charge as a function of time using actual experimental parameters is
depicted in Fig. 9.

We expect to be able to see (using synchronous detection) the charge separation
induced by these gravitational fields in a superconducting circuit, which consists of
two well-separated superconducting bodies, both of which are suspended by means
of pairs of superconducting wires inside the same refrigerator, so that the two bodies
form the superconducting plumb bobs of two pendula. These two bodies are then
coherently connected to each other by means of a pair of parallel superconducting
wires, as indicated in Fig. 3, to form a single superconducting circuit, i.e., a single
quantum entity. The charge separation effect can then be measured inductively by
means of a sensitive electrometer (we should be able to see the charge induced by the
extruded Cooper pairs, which should be on the order of picocoulombs, with a high
signal-to-noise ratio). If we should observe a nonzero charge-separation signal in this
experiment, then this observation would establish the existence of a novel coupling
between gravity and electricity mediated by means of macroscopic quantum matter.

Normally, the gravitational fields due to the lead bricks should cause small angular
deflections on the order of nanoradians of the two pendula. These small deflections
should occur relative to the local vertical axis which is located at the midpoint in be-
tween them (see Fig. 3, in which the two freely-falling objects are replaced by the two
plumb bobs of the two pendula). We would normally expect to see such deflections
if these two pendula consisted of normal, classical matter, or if they consist of two
superconducting plumb bobs which have had their superconducting connection be-
tween them destroyed due to decoherence. Such deflections could be measured with
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high signal-to-noise ratios using laser interferometry. If we were to monitor both the
deflections of the pendula and the charge separation effect in the same experiment,
there would be four logical possibilities as to the possible outcomes:

(I) Charge-separation? YES. Deflection? NO.
(II) Charge-separation? NO. Deflection? YES.

(III) Charge-separation? YES. Deflection? YES.
(IV) Charge-separation? NO. Deflection? NO.

Based on the arguments presented above, we would expect (I) to be the outcome, if
the Cooper pairs were to be able to drag the ions of the lattice into co-motion with
these superconducting electrons during free fall. In the tug-of-war between the uncer-
tainty principle and the equivalence principle, the uncertainty principle wins in (I). By
contrast, if there is nothing special about this superconducting system over any other
material system, i.e., if the universality of free fall were to apply to the Cooper pairs
inside the superconducting circuit so that they would undergo free fall along with the
ions, and therefore the superconducting system would remain electrically neutral and
unpolarized during free fall, then we would expect (II) to be the outcome. The equiv-
alence principle wins in (II). If, however, there does exist a charge-separation effect,
but the ions of the lattice were to drag the Cooper pairs into co-motion with the ionic
lattice during free fall, then we would expect (III) to be the outcome. Finally, there
exists the remote possibility of outcome (IV), which would indicate that Newtonian
gravity would somehow have failed to produce any deflection at all of the pendula
in this experiment, but that nevertheless the system remains electrically neutral and
unpolarized in the presence of the ton of bricks. Results from this “Cavendish-like”
experiment will be presented elsewhere.

Under the present experimental conditions of the Cavendish-like experiment, two
of the four outcomes listed above have been ruled out. To understand why let us
consider one of the superconducting pendula plumb bobs, and suppose that a stable
DC charge separation effect exist within the plumb bob for t ≤ 0. Note that, as shown
above, this DC charge separation effect would lead to an internal voltage drop of
approximately 1 Volt across the superconducting plumb bob. By stable, it is meant
that there are no time changing quantities so that

∂�B

∂t
= 0,

∂A

∂t
= 0 and

∂�E

∂t
= 0; t ≤ 0.

Because there is no external electric field to cancel out the internal electric field pro-
duced by the predicted stable DC charge separation effect for t ≤ 0, there must be a
measurable voltage drop across the superconducting plumb bob. This is to be con-
trasted with the case of a conductor placed between two parallel plates of a capacitor
where there exists a stable charge separation effect but no measurable voltage drop
across it. Hence, if we allow the system to evolve at t > 0, the Cooper pairs deep
inside the SC will experience a scalar potential (φ) which imparts energy to the pairs.

|E| = qφ = 2eφ ∼ 2 eV,

where we set φ = 1 Volt as predicted above. Comparing this energy with the ground
state energy gap involved in most conventional type I superconductors, Eg ∼ meV,
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we see that such scalar potential would excite the Cooper pairs into the quasi-particle
state, thus leading to a pair-breaking mechanism. Therefore, such DC charge separa-
tion effect would not be stable and there would be no measurable charge separation
in the present Cavendish-Like experiment. Hence outcomes (I) and (III), where a
measurable stable DC charge separation effect are expected, have already been ruled
out, leaving us with outcome (II) and (IV) as the only remaining two possibilities,
though in an experiment involving high-frequency perturbations, these two outcome
possibilities may remain.
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