7,889 research outputs found

    Monitoring stimulated emission at the single photon level in one-dimensional atoms

    Get PDF
    We theoretically investigate signatures of stimulated emission at the single photon level for a two-level atom interacting with a one-dimensional light field. We consider the transient regime where the atom is initially excited, and the steady state regime where the atom is continuously driven with an external pump. The influence of pure dephasing is studied, clearly showing that these effects can be evidenced with state of the art solid state devices. We finally propose a scheme to demonstrate the stimulation of one optical transition by monitoring another one, in three-level one-dimensional atoms.Comment: 4 pages, 4 figures. Improved introduction; Comments adde

    Plasma Processing of Large Curved Surfaces for SRF Cavity Modification

    Get PDF
    Plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simple cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl2/Ar gas mixtures, residence time of reactive species and temperature of the cavity. Using cylindrical electrodes with variable radius, large-surface ring-shaped samples and d.c. bias implementation in the external circuit we have demonstrated substantial average etching rates and outlined the possibility to optimize plasma properties with respect to maximum surface processing effect

    Correlation between magnetic interactions and domain structure in A1 FePt ferromagnetic thin films

    Get PDF
    We have investigated the relationship between the domain structure and the magnetic interactions in a series of FePt ferromagnetic thin films of varying thickness. As-made films grow in the magnetically soft and chemically disordered A1 phase that may have two distinct domain structures. Above a critical thickness dcr30d_{cr}\sim 30 nm the presence of an out of plane anisotropy induces the formation of stripes, while for d<dcrd<d_{cr} planar domains occur. Magnetic interactions have been characterized using the well known DCD-IRM remanence protocols, δM\delta M plots, and magnetic viscosity measurements. We have observed a strong correlation between the domain configuration and the sign of the magnetic interactions. Planar domains are associated with positive exchange-like interactions, while stripe domains have a strong negative dipolar-like contribution. In this last case we have found a close correlation between the interaction parameter and the surface dipolar energy of the stripe domain structure. Using time dependent magnetic viscosity measurements, we have also estimated an average activation volume for magnetic reversal, Vac1.37×104\langle V_{ac}\rangle \sim 1.37\times 10^{4} nm3,^{3}, which is approximately independent of the film thickness or the stripe period.Comment: 25 pages, 11 figure

    Effect of Self-Bias on Cylindrical Capacitive Discharge for Processing of Inner Walls of Tubular Structures-Case of SRF Cavities

    Get PDF
    Cylindrical capacitive discharge is a convenient medium for generating reactive ions to process inner walls superconductive radio-frequency (SRF) cavities. These cavities, used in particle accelerators, presents a three-dimensional structure made of bulk Niobium, with axial cylindrical symmetry. Manufactured cavity walls are covered with Niobium oxides and scattered particulates, which must be removed for desired SRF performance. Cylindrical capacitive discharge in a mixture of Ar and Cl2 is a sole and natural non-wet acid choice to purify the inner surfaces of SRF cavities by reactive ion etching. Coaxial cylindrical discharge is generated between a powered inner electrode and the grounded outer electrode, which is the cavity wall to be etched. Plasma sheath voltages were tailored to process the outer wall by providing an additional dc current to the inner electrode with the help of an external compensating dc power supply and corrugated design of the inner electrode. The dc bias potential difference is established between two electrodes to make the set-up favorable for SRF wall processing. To establish guidelines for reversing the asymmetry and establishing the optimal sheath voltage at the cavity wall, the dc self-bias potential and dc current dependence on process parameters, such as gas pressure, rf power and chlorine content in the Ar/Cl2 gas mixture was measured. The process is potentially applicable to all concave metallic surfaces. © 2018 Author(s)

    Equilibrium properties of the mixed state in superconducting niobium in a transverse magnetic field: Experiment and theoretical model

    Full text link
    Equilibrium magnetic properties of the mixed state in type-II superconductors were measured with high purity bulk and film niobium samples in parallel and perpendicular magnetic fields using dc magnetometry and scanning Hall-probe microscopy. Equilibrium magnetization data for the perpendicular geometry were obtained for the first time. It was found that none of the existing theories is consistent with these new data. To address this problem, a theoretical model is developed and experimentally validated. The new model describes the mixed state in an averaged limit, i.e. %without detailing the samples' magnetic structure and therefore ignoring interactions between vortices. It is quantitatively consistent with the data obtained in a perpendicular field and provides new insights on properties of vortices. % and the entire mixed state. At low values of the Ginzburg-Landau parameter, the model converts to that of Peierls and London for the intermediate state in type-I superconductors. It is shown that description of the vortex matter in superconductors in terms of a 2D gas is more appropriate than the frequently used crystal- and glass-like scenarios.Comment: 8 pages, 9 figure

    Modelling diffusion of innovations in a social network

    Get PDF
    A new simple model of diffusion of innovations in a social network with upgrading costs is introduced. Agents are characterized by a single real variable, their technological level. According to local information agents decide whether to upgrade their level or not balancing their possible benefit with the upgrading cost. A critical point where technological avalanches display a power-law behavior is also found. This critical point is characterized by a macroscopic observable that turns out to optimize technological growth in the stationary state. Analytical results supporting our findings are found for the globally coupled case.Comment: 4 pages, 5 figures. Final version accepted in PR

    ALDEHYDE EMISSIONS FROM A STATIONARY DIESEL ENGINE OPERATING WITH CASTOR OIL BIODIESEL – DIESEL OIL BLENDS

    Get PDF
    The presence of aldehyde in the exhaust gas of a stationary, direct injection, compression ignition engine operating with castor oil biodiesel/diesel oil blends (B5, B10, B20 and B35) is analyzed. The diesel engine was operated with constant speed of 1800 rev/min and load of 37.5 kW. The gas sample was collected directly from the exhaust. Aldehydes were identified and quantified using gas chromatography (GC) with flame ionization detector analyzer (FID). Acetaldehyde presented higher exhaust concentration than formaldehyde for all fuel blends tested. In general, the exhaust aldehyde levels were very low and did not present significant differences between the fuel blends tested
    corecore