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Abstract
Soil erosion, rapid geomorphological change and vegetation degradation are major threats to the human and natural
environment. Unmanned Aerial Systems (UAS) can be used as tools to provide detailed and accurate estimations of
landscape change. The effect of flight strategy on the accuracy of UAS image data products, typically a digital surface
model (DSM) and orthophoto, is unknown. Herein different flying altitudes (126-235 m) and area coverage orientations
(N-S and SW-NE) are assessed in a semi-arid and medium-relief area where terraced and abandoned agricultural fields are
heavily damaged by piping and gully erosion. The assessment was with respect to cell size, vertical and horizontal accuracy,
absolute difference of DSM, and registration of recognizable landscape features. The results show increasing cell size (5-9
cm) with increasing altitude, and differences between elevation values (10-20 cm) for different flight directions. Vertical
accuracy ranged 4-7 cm but showed no clear relationship with flight strategy, whilst horizontal error was stable (2-4 cm) for
the different orthophotos. In all data sets, geomorphological features such as piping channels, rills and gullies and vegetation
patches could be labeled by a technician. Finally, the datasets have been released in a public repository.

Keywords UAV · Fixed-wings · Low-altitude aerial photography · DSM assessment · Soil erosion · Geomorphology ·
Remote sensing

Introduction

Soil erosion and rapid geomorphological change are major
threats to the environment and societal infrastructure in
many regions of the world (Martin 1980).

Quantifying and monitoring geomorphological activity is
challenging. While in-situ instruments are good tools for
the acquisition of data of local activity, they often fail to
provide the context that is required in order to understand
the spatial dimension of a catchment or landscape (Smith
and Pain 2009). Satellite imagery on the other hand is able
to provide this spatial dimension, but may be very expensive
or lack the detail and temporal resolution that is required
to analyze at the scale that many soil erosion processes act
(Iizuka et al. 2018).

Communicated By: H. Babaie

� Saskia Keesstra
saskia.keesstra@wur.nl

Extended author information available on the last page of the article.

The most common Unmanned Aerial Systems (UASs)
adopted are radio and GPS-controlled small aircraft or
multicopters that show significant potential for aerial data
acquisition (Colomina and Molina 2014). Photogrammetry
is a widely used methodology for creating digital elevation
models (DEMs) and orthorectified image mosaics from
aerial (stereo) photographs (Lillesand 2006).

Recent developments in image processing have rapidly
increased the popularity of UASs. In particular Structure-
from-Motion (SfM) and MultiView Stereo (MVS) algo-
rithms have proved very successful for the 3D reconstruc-
tion of surfaces and landscapes (Westoby et al. 2012; Ver-
icat et al. 2014). SfM/MVS is able to process thousands
of (GPS-tagged) images automatically, without the use of
Ground Control Points (GCPs) and manual georeferencing,
producing very dense point clouds, digital surface models
(DSMs) and orthorectified photomosaics at centimeter scale
(Westoby et al. 2012; Harwin and Lucieer 2012).

In addition to the high spatial resolution, UAS can be
utilized anytime to produce high temporal resolution data.
In particular fixed-wing systems can cover relatively large
areas and so image entire catchments. This enables analysis
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of small-scale processes at catchment scales (Colomina
and Molina 2014). In this sense, UAS can provide
data products for geomorphological analysis with enough
detail in both the spatial and temporal domain. Recent
studies have proven the value of UAS in various research
disciplines, for example very-high resolution topographic
modeling in natural (Mancini et al. 2013) and rural
environments (Mancini et al. 2013) or riverine (Watanabe
and Kawahara 2016), for purposes of e.g. geomorphological
mapping (Hugenholtz et al. 2013), studying soil surface
characteristics (Corbane et al. 2012) or analyzing processes
such as landslide dynamics (Lucieer et al. 2014; Stumpf
et al. 2013), soil and gully erosion (Marzolff et al. 2011;
D’Oleire-Oltmanns et al. 2012), and rangeland monitoring
(Laliberte et al. 2010).

Despite the fact that many researchers are already
applying UAS in their work, there is little known about
the accuracy of UAV protocols and image data products.
Harwin and Lucieer (2012) indicate that SfM/MVS point
clouds can reach sub-decimeter accuracy whilst, James and
Robson (2012) note centimeter precision at 50 m altitude.
Furthermore, Gindraux et al. (2017) studied the influence
of GCPs in the DSMs accuracy over eight surveys (made
with multi-rotor platform) distributed on three glaciers in
the Swiss Alps. The authors found that the DSMs accuracy
diminish rate of 0.09 meters per 100-meters distance, and
achieved minimum horizontal and vertical accuracy from
0.1 and 0.03 meters. Finally, Forlani et al. (2018) assessed
the DSMs accuracy from a fixed-wing UAV with a on-
board Real-time kinematic (RTK) in a urban scenario. The
experiments show that using the RTK system proposed does
not improve vertical and horizontal accuracy. Using 12 GCP
the accuracy worst case is about 2 and 3.3 cm, while with
RTK it decreases to average values from 2.4 cm (horizontal)
and 4.6 cm (vertical). The authors suggest that this result
might be due to a system misconfiguration.

Nevertheless, how accuracy changes with relief and flight
strategy was not studied before. Flight lines are created
based on the take-off location and direction. The actual
flight altitude varies significantly throughout a survey,

particularly when changes of relief are within the same
order of magnitude as the flight altitude, which is often
the case when using low-altitude aerial photography in
medium – high relief environments. With different flight
directions there will be a variable spatial distribution
of flight altitude which may result in different DSM
reconstructions. Moreover, camera properties, motion blur
caused by internal (platform) or external (weather) factors,
camera angle, and illumination conditions all affect image
quality which in turn may affect surface reconstructions
and the generation of orthophotos (O’Connor et al. 2017).
For monitoring campaigns it is crucial to understand and
minimize such variation and so avoid misrepresentation of
“change” captured by multi-temporal data sets.

Within this context, the goal of this paper is to investigate
how DSM (and orthophoto) accuracy varies with different
flight strategies and if there is a noticeable trade-off
between spatial resolution and aerial surveying time. In
the medium-relief and semi-arid region of Murcia, Spain,
several multiple flights, with different mission parameters,
such as, flying altitude and area coverage orientation were
undertook. The paper concludes with a discussion on the
usability of UAS for monitoring geomorphological change
and vegetation development.

Methods

Study area

The field site is located in the semi-arid Lorca basin,
in Southeastern Spain where the Luchena river joins the
northern branch of the Puentes reservoir (37◦45’20.62”N,
1◦51’19.99”W). Due to the dry conditions (270 mm annual
rainfall, potential evapotranspiration > 900 mm) this area
has only limited and partial vegetation cover which allows
reconstruction of the actual ground surface (see Fig. 1)
(Sanchez-Toribio et al. 2010). The site is a small denudation
niche developed in a Holocene to late Pleistocene lacustrine
terrace with gypseferous and calcareous lacustrine silts,

Fig. 1 a The study area is located in the Province of Murcia in southeastern Spain. The photos represent the study area, including the damaged
check dams (b), and the UAS (c)
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comparable to the terraces as described in (Baartman et al.
2011). This denudation niche is re-shaped by man-made,
almost level, bench terraces which now show extreme forms
of gullying, piping and collapsed pipes. These terraces were
abandoned around 2000 after cultivation with drip irrigated
crops. Some physical and chemical characteristics of the
site’s top soil can be found in van der Meulen et al. (2006).

Erosion features in this region have been a topic of
interest for a long time. Both long-term erosion (Ruiz-
Sinoga and Diaz 2010) and contemporary erosion processes
(Garcı́a-Ruiz et al. 2013; Nadeu et al. 2015) have been under
study. Erosion features in natural areas (Dı́az and Bermúdez
1988; Martı́nez-Hernández et al. 2017; Dı́az et al. 2007) and
in cultivated areas (Romero-Dı́az et al. 2017; de-las Heras
et al. 2019) have been studied. In addition, much focus
has been put on potential measures to prevent erosion in
cultivated areas; both in dryland as well as in irrigated areas
(Castillo et al. 2007; Calatrava et al. 2011; Garcı́a-Ruiz et al.
2013; Hooke and Sandercock 2017).

Materials and software

The flights were carried out using a MAVinci Sirius 1 UAS,
which is a typical low-weight ready-to-fly system, and the
methodology and output that are described in this paper
can be considered representative for other contemporary
UAS. Ground speed is approximately 50 km/h during
flights with low wind speed, with the maximum flight time
ranging between 30-60 minutes. The carrying capacity is
approximately 0.5 kg with a GPS and inertial measurement
unit (IMU). A Panasonic Lumix GX1 16 megapixel camera,
which can collect both RAW and JPEG photos (at 0.5 and
1.5 frames per second) was used. In this study only JPEG
format images were collected.

Flight planning was carried out with the MAVinci
Desktop that is part of the MAVinci UAS. Images were
processed with Structure-from-Motion photogrammetry
(with Agisoft Photoscan Pro 1.0 software) and further
analysis carried out with Python 2.7 and the Geospatial Data
Abstraction Layer (GDAL).

Ground control points (GCPs)

Without the use of GCPs the horizontal and vertical
accuracy of products derived from the aerial imagery (point
cloud, digital elevation models, orthorectified imagery) is
similar to the accuracy of the GPS device on board of
the UAS, which is in the range of several meters. By re-
aligning the SfM point cloud (more info in Section “Flight
procedure”) with a limited number of accurate GCPs this
accuracy can be improved significantly (Turner et al. 2012),
up to several centimeter accuracy.

In total 15 GCPs have been positioned strategically, i.e.
well distributed throughout the area to capture the outer
regions of the area of interest, as well as the lowest and
highest points of the area of interest. Moreover, GCPs
have been placed near special areas, such as important
breaks-of-slope of the terrace levels near gully systems
of interest). The GCPs themselves were simple 80 cm
x 80 cm orange textile rectangles, with in the center a
black textile square containing a CD disk. The centers of
the CD disks were measured with a TOPCON Hiper Pro
DGPS (Differential Global Positioning System) that has
a horizontal and vertical accuracy of 10 mm. The orange
textile combined with the CD made it easy to recognize the
GCPs from the aerial imagery and find the exact point of
measurement.

Flight procedure

Flight lines were created based on a selected area of interest
and a desired Ground Sampling Distance (GSD). The higher
the flight altitude (i.e. distance to ground surface), the larger
the GSD. A single flight line is constant in heading and
elevation (distance to mean sea level) to ensure a stable
flight, however, elevation can vary between flight lines to
match the landscape’s topography and minimize variations
of GSD throughout the data set. Flight lines and camera
trigger locations enabled 85% overlap in flight direction and
65% sidelap. After landing, the GPS/ENU logs were copied
to the EXIF metadata of the images.

SfM/MVS processing chain

The aerial imagery was processed using Structure-from-
Motion (SfM) and MultiView Stereo algorithms (MVS)
as implemented in the commercially available software
Agisoft Photoscan Professional (v1.0) (AgiSoft 2014).
There are freely available alternatives such as VisualSfM
V0.5.24 (Wu 2013), Microsoft PhotoSynth for the creation
of SfM/MVS point clouds, which then need further
processing in software such as ArcGIS V10.6 (commercial)
or Meshlab (free). The SfM/MVS processing chain is
summarized in Fig. 2.

In general, the processing steps are: 1) Import selected
imagery. Selection criteria can be based on camera
orientation (roll/pitch/yaw) or blurriness to ensure the
processing of high-quality, in-focus, images. We selected
imagery with a maximum roll and pitch of 10 degrees;
2) Camera alignment and estimation of interior camera
parameters. This step uses the SfM algorithm which
is developed specifically for creating 3D models of
unstructured photo collections (Brown and Lowe 2005).
SfM requires multiple images of an object from different
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Fig. 2 Schematic overview of
the processing chain in Agisoft
Photoscan. The flow chart
differentiates input data,
processing steps and output
data. The numbers correspond to
the steps in Section “Flight
procedure”

camera positions, where possible with > 70% overlap.
Image features are identified in image pairs and used as
tie points for 3D reconstruction. The output is a unfiltered
point cloud which has an approximate average point spacing
of 0.5-1 m (Rosnell and Honkavaara 2012); 3) Manual
identification and placement of GCPs in the imagery
data; 4) Optimization of interior camera parameters and
georeferencing of the sparse point cloud to best fit the GCP
coordinates; 5) Generation of a dense point cloud using
MVS. MVS revisits the SfM image pairs, reduces noise
and generates more points between the tie points (Seitz
et al. 2006). Typically for UAS data, the average point
cloud spacing is approximately 0.05 m, depending on flight
altitude, camera specifications and surface properties; 6)
The dense point cloud is used to create a continuous mesh
which can be converted to a DSM; and 7) Texture is blended
on top of the mesh to create an orthorectified image mosaic
of the aerial photos.

Experimental design

Data acquisition

In a single day we undertook three flights over the study
area. The flights were labeled based on their direction (A-B)
and relative altitude (1-3). The first flight had flight lines in a
north-south (N-S) direction at a relatively low altitude (A1),
the second flight had flight lines in a southwest-northeast
(SW-NE) direction at a medium altitude (B2), and third
flight had flight lines in a SW-NE direction at a relatively
high altitude (B3).

In order to compare camera altitude and flight direction
independently, additional data sets were created. High-
resolution images were resampled to a lower resolution in
order to replicate higher altitude flights. The images from
flight A1 were resampled to match the GSD of higher
altitudes 2 and 3, creating the image sets A2* and A3*.
Images from flight B2 were resampled to B3* to match the

same GSD as flight B3 to see the impact of differences
in UAV stability during a flight. For clarity the * indicates
the data set has been resampled, instead of original flight
imagery. Camera altitude was calculated based on the on-
board GPS-measured aircraft elevation and the produced
DSM of flight B3:

AltA1 = AltA1 − ZDSM (1)

AltB2 = AltB2 − ZDSM (2)

where AltA1 is the camera altitude (above ground surface),
ZA1 is the camera elevation (above mean sea level) and
ZDSM is the ground surface elevation. The DSM of flight
B3 was selected because this flight had the largest coverage.
The ratio of mean camera altitude between A1 and B2 was
used to calculate the target GSD of A2*:

R = AltA1

AltB2
(3)

GSDA2∗ = GSDA1.R (4)

where R is the ratio of mean flight altitude of A1 and
B2. Here the mean camera altitudes, rather than individual
values, were used to preserve the standard deviation of
altitude and replicate the increase in elevation for the entire
set of flight lines as a whole. The same principle was used to
create data sets A3* (based on A1) and B3* (based on B2).

Table 1 Overview of the data sets created. Heading A/B refers to
direction of the flight lines, i.e. NS and SW – NE, respectively. Altitude
1-3 refers to three mean altitude zones, and F/R refers to “Flight” and
“Resampled data set”

Altitude 1 Altitude 2 Altitude 3

Heading A F R R

Heading B − F F & R

Earth Sci Inform (2020) 13:391–404394



Table 2 Overview of the data product characteristics with regard to the data introduce in Section “Data acquisition”: Flight direction (P1), Average
altitude (P2), Std. altitude (P3), Appr. flight altitude (P4), # of images (P5), Area coverage (P6), Average point spacing (P7), Average point density
(P8), DSM cell size (P9), Orthophoto cell size (P10), MAE ± Std. DSM (P11), MAE ± Std. orthophoto (P12), Precision ratio DSM (P13), and
Precision ratio orthophoto (P14)

Property Unit Flight A1 Flight A2* Flight A3* Flight B2 Flight B3 Flight B3*

P1 − N-S N-S N-S SW-NE SW-NE SW-NE

P2 m 126 153 235 153 235 235

P3 m 11 11 11 10 11 10

P4 min 40 − − 30 20 −
P5 − 1458 1458 1458 1191 524 1191

P6 ha 55 55 55 73 96 73

P7 m 0.04 0.05 0.08 0.05 0.08 0.08

P8 pts m−2 565 379 155 376 156 157

P9 m 0.047 0.057 0.089 0.058 0.090 0.089

P10 m 0.024 0.029 0.045 0.029 0.045 0.044

P11 cm 4.0 ± 4.8 5.3 ± 4.1 7.4 ± 6.0 4.0 ± 5.8 3.8 ± 4.4 2.7 ± 2.7

P12 cm 4.0 ± 2.0 4.4 ± 1.8 4.4 ± 2.1 4.8 ± 2.3 4.9 ± 2.2 4.4 ± 2.1

P13 − 2681 2684 2640 2638 2611 2640

P14 − 5250 5276 5222 5276 5222 5341

The images were resampled (linear interpolation) within the
freely available NConvert image processor.1

New camera elevations of the resampled images were
calculated based on the DSM and (mean) camera elevations:

ZA2∗ = ZA1∗ − AltA1 + AltB2 (5)

where AltA1 and AltB2 are mean camera altitudes of A1
and B2 respectively. These values were stored in the EXIF
metadata of the JPEG images for further processing. The
same procedure was carried between flight A1 and flight
B3 to create the resampled image set A3*. In this way we
acquired two data sets with varying GSD in flight direction
A and three data sets with varying GSD in flight direction
B. See Table 1 for an overview of the analyzed data sets.

Tests

The six data sets were used to create and compare the
constructed DSMs and orthophotos. The tests focused
on: The cell size of the data products, vertical and
horizontal accuracy, absolute difference of DSMs, the
spatial distribution of deviation between different flight sets,
and registration of recognizable features. The cell size of
the data products is automatically determined in Agisoft
Photoscan based on the average point spacing of the dense
point cloud. Moreover, the overall vertical accuracy of the

1http://www.xnview.com/en/nconvert/

DSM is determined by using absolute vertical deviation
from the dGPS measurements,

Av =

n∑

i=1
|ZDSMi

− ZdGPSi
|

n
(6)

where Av is the average vertical accuracy of the DSM,
ZDSM and ZdGPS are the z-values from the DSM and
dGPS, respectively, and n is the number of validation GCPs.
For the horizontal accuracy of the orthophoto, manual
digitization of marker locations in the orthophoto were
compared with the dGPS measurements of the marker
locations. Similar to the vertical accuracy calculations,
average deviation from the dGPS measurements was used as
a basis to assess the horizontal accuracy of the orthophoto,

Ah =

n∑

i=1
|XYOrthoi

− XYdGPSi
|

n
(7)

where Ah is the overall horizontal accuracy, XYortho is the
(x,y) position of the GCP in the orthomosaic, XYdGPS is the
(x,y) position of the GCP as measured by the dGPS, and n
is the number of validation GCPs.

Furthermore, the absolute difference of DSMs and the
spatial distribution of deviation between different flight
sets gives insight in to the reproducibility of the process
chain and usability for topographic change detection or
landscape monitoring. Preparation of the original data sets
was required to match the grid systems (location of grid
cell center and cell size) of two DSMs. We used the
highest resolution data set as the target grid system, and
used GDAL’s reprojection tool to resample the second data
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Fig. 3 The subsets show the locations (in UTM Zone 30N coordinates in [m]), elevation [m] and altitude [m] of the aircraft and the camera

set into the same grid system. Subsequently grid cells of
the DSMs were subtracted for comparison. Finally, the
registration of recognizable features in the data products
includes geomorphological entities, such as rills and gullies,
and surface objects such as vegetation and infrastructure.

Results

Data acquisition

Table 2 shows a summary of the data characteristics of the
acquired imagery and derived products. The three flights

A1, B2 and B3 took approximately 40, 30 and 20 minutes,
respectively, covering 55 – 96 hectares. Average flight
altitude was 126, 153 and 235 m, with a standard deviation
of 10 – 11 m. The number of images varied from 1458 in
flight A1 to 524 in B3. The A2*, A3* and B3* image sets
have similar properties.

Figure 3 shows the camera elevation [meters above sea
level] and altitude [meters above ground surface] of the
imagery of the six data sets. The two flight directions
are clearly visible (N-S for A1-3; SW-NE for B2-3), with
the distance between flight lines and camera locations
decreasing with lower altitude. This is due to the smaller
footprint (field of view) of the camera at lower altitudes.

Fig. 4 Example of the DSM (Digital Surface Model), and shaded relief with 50% transparency (left) and the orthophoto (right), produced with
images from flight A1. The colored dots represent the locations of the GCPs and vertical and horizontal deviation from dGPS measurements

Earth Sci Inform (2020) 13:391–404396



Fig. 5 Absolute vertical deviation [m] with dGPS at different flight altitudes

The elevation within a flight line is constant, but between
flight lines elevation varies to minimize variation of the
average GSD in the hilly landscape. Nevertheless, there’s
considerable variation of camera altitude (Fig. 3-bottom)
and the related GSD. It is expected this variation results in a
non-uniform spatial distribution of error in elevation of the
DSM, and detail in the orthophoto.

Test results

The following section presents the results from the com-
parisons, concerning cell size, vertical and horizontal accu-
racy, difference of DSMs, and registration of recognizable
features. A DSM and orthophoto from the study area is
depicted in Fig. 4.

Fig. 6 Subsets showing difference of DSMs [m] of the different
flights. The labels at the left and top show which DSMs were com-
pared. The colors from blue to red represent -0.2 to 0.2 meters
difference. The location of the subset is shown by the black rectangle

in Fig. 4. For clarity the * indicates the data set has been resam-
pled, instead of original flight imagery (please refer to Section “Data
acquisition”)

Earth Sci Inform (2020) 13:391–404 397



Cell size

The cell size of the derived DSM and orthophoto is
listed in Table 2, and is related to the average flight
altitude and GSD. A higher flight altitude results in a
larger GSD in the imagery, resulting in fewer identifiable
features and so a larger point spacing. The cell size of
the DSM is approximately equal to the point spacing of
the dense point cloud; the cell size of the orthophoto is
approximately equal to the average GSD. With the current
set up, DSMs and orthophotos with cell sizes of 4.7 –
9.0 cm and 2.4 – 4.5 cm respectively were constructed,
which potentially provides enough detail for fine-scale
topographic and geomorphological analysis and vegetation
studies and classifications, up to single vegetation units.

Vertical and horizontal accuracy

Figure 5 shows the vertical and horizontal deviation from
dGPS measurements, which are summarized in Table 2 by
the mean absolute error (MAE) and standard deviation. The
same GCPs were used to calculate the MAE, and therefore
represent the model fit. MAE is hereafter referred to as
vertical and horizontal error. With images from flight A1
we were able to produce a DSM with a vertical error of less
than five centimeters. With increasing altitude, the vertical
error increases in sets A2* and A3*. For flights B2-3 with
flight direction SW-NE the vertical error does not increase
as much.

The horizontal error appears stable with different flight
directions and altitudes and was consistently lower than 5
cm, i.e. not more than 1-2 pixels.

Difference of DSMs

We assume that the variability in output found are a result of
differences in data acquisition or processing. For example,
variability of output can be caused by: 1) topography, which
we assumed to be stable since all flights were carried out on
the same day. Topography also affects relative flight altitude
and associated GSD; 2) weather, which influences air and
ground speed, turbulence, and light conditions, which can
lead to differences in motion blur and texture in the images;
and 3) flight lines, including altitude and orientation (roll,
pitch and yaw). Figure 6 shows the Difference of DSMs
(DoDs) which present the distribution of variation when
different DSMs are subtracted from each other. Here, the
DSM noted on the left label is subtracted from the DSM
noted in the label at the top. Several noteworthy differences
can be seen.

1. In areas with high vegetation such as trees and high
shrubs, DoDs show high differences, for example in the

southwest corner. In such areas, small variation or error
in xy leads to high variation in z.

2. B3 versus B3* represents two flights with the same
elevation and the same direction, and should ideally
produce similar results. In general, the difference
between both DSMs is 5-10 cm and corresponds to the
vertical deviation to the dGPS measurements presented
in Fig. 5. Moreover, several “bumps” and “depressions”
are located in the center of the DoD.

3. A1 versus A2* and A3*, A2* versus A3*, and B2
versus B3 show the effect of flight altitude. In general,
flights at different altitudes are found to generate
comparable DSMs within 5-10 cm variation. Yet, flights
at higher altitudes appear to estimate lower areas
slightly higher, and the higher areas lower; flights at
higher altitude are more ‘flattened’.

4. B2 versus B3, which are actual flights rather than
resampled imagery, show higher variations than when
comparing B2 versus B3* that share the same source
imagery.

5. A2* versus B2, and A3* versus B3 show the impact of
flight direction. Generally flight direction has a much
stronger impact on the elevation values than flight
altitude. In the center higher elevation values, up to 15-
20 cm difference, are calculated with flights in the B
direction compared to flights in the A direction. Also,
the lower area in the southwest is modeled with higher
elevation values in the B flights.

Registration of recognizable features

Figure 7 shows the DSMs of a terraced and abandoned
agricultural field that is damaged by gully erosion initiated
by piping processes, captured during flights A1 – B3.
Despite more detail in the DSMs at the lower altitude
flights, it is evident that in all flights the same processes
and landforms can be clearly recognized, i.e. the extensive
gully in the center, parallel small gully systems, and piping
channels exiting along the edge of the terrace (e.g. in the
lower left in the subset). The irregular patterns around
the gullies are vegetation patches and small shrubs. With
lower resolution images from higher altitude flights more
vegetation points are filtered out, resulting in a relatively
smooth DSM in areas with vegetation. All this features have
been identified and labeled by a technician.

The variation in vertical accuracy of the DSM in Fig. 5
is reflected in the cross section profiles shown in Fig. 8.
Flight A1 shows the most detail, including higher values
of vegetation height. The depth of the gully channel varies
depending on the flights, particularly A3*. While the mean
flight altitude of B3 and A3* is the same, the spatial
distribution of flight altitude is different.
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Fig. 7 Subsets showing the
DSMs of a terraced abandoned
agricultural field that is incised
by different gully systems. The
blue and red color represent 469
- 473 m elevation. The black
lines show the location of the
cross section presented in Fig. 8.
The outline of the subset is
highlighted by the blue
rectangle in Fig. 4

Figure 9 shows the different orthophotos produced by
the different sets of imagery. It is evident that lower
altitude flights produce a more detailed orthorectified
mosaic, and detail is gradually reduced with increasing
altitude. Nevertheless, even in the A3* and B3 sets,
individual shrubs and trees can be recognized. This means
that for most vegetation mapping or monitoring campaigns
higher altitude flights are likely to produce sufficient detail.
In addition, there are not significant visual differences noted
between orthophotos produced with the two different flight
directions.

Discussion

This section discusses how the reproducibility of flight
campaigns can be maximized for different purposes, such as

mapping, measuring, and monitoring the geomorphological
or ecological state of a landscape.

Impact of flight strategy on DSMs and orthophotos

In general, higher altitude flights produce images with
larger grid cells which is expected. With larger grid cells
only larger features can be identified, resulting in fewer tie
points and fewer points in the final dense point cloud. A
sparser point spacing leads to a DSM with larger grid cells.
Not only does the size of the grid cells increase, but the
detail of the DSM also decreases due to the point filtering
algorithm that is part of the multiview stereo processing. For
example, flight A1 shows most detail in the DSM (Fig. 6)
and the derived profile in Fig. 8. The ‘bumps’ in the A1
profile at the left edge of the left channel, and the right
edge of the right channel, are shrubs. In higher altitude

Fig. 8 Cross section of two gully
channels extracted from the
DSMs from the different flights
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Fig. 9 Subsets showing the orthophotos produced with the different flight imagery. The outline of the subset is highlighted by the red rectangle
in Fig. 4. For clarity the * indicates the data set has been resampled, instead of original flight imagery (please refer to Section “Data acquisition”)

flights parts of the vegetation (e.g. branches) have few tie
points, which are then considered noise and removed. Lower
altitude imagery produces more tie points for (parts of) the
vegetation which are not considered noise. The result is a
more irregular shaped DSM including vegetation heights
with lower altitude flights, and a smoother DSM where
vegetation is partly removed with higher altitude flights.
This effect has to be taken into account in studies where
vegetation height is relevant.

Vertical and horizontal errors

The order of magnitude of absolute vertical errors in
this study (Fig. 5) are in line with recent literature (e.g.
(Lucieer et al. 2014; Mancini et al. 2013) and are within
an acceptable range (5 – 10 cm) for many applications.
Distinct morphological change can be measured, but subtle
topographic variation will not be detected within the
operating limitations of an aircraft. Flights with direction
A showed a noticeable decrease of vertical accuracy with
increasing altitude, but flights with direction B did not show
any decrease in accuracy. This may indicate the B direction
flight lines are more optimal, but this has to be tested further.
Moreover, studies that used hand-held or close-range SfM
photogrammetry note a vertical accuracy of less than 2.5
cm (e.g. (Gómez-Gutiérrez et al. 2014)). The higher vertical

errors from this study are a result of greater altitude, lack of
oblique images, low cost camera and/or higher relief (Rossi
et al. 2017). Multicopters could potentially produce more
accurate DEMs as they are able to fly at lower altitudes, and
often have a larger payload for more advanced cameras, but
at the cost of area coverage (Colomina and Molina 2014).

Differences on DSMs

The DoDs values (Fig. 7) are also of the same order of
magnitude as presented by e.g. (Westoby et al. 2012). In the
northeast and southwest higher values are found, which are
caused by insufficient overlap of imagery and an absence of
GCPs in that area. Higher flight altitudes appears to flatten
the DSM in a way that the lowest areas in the southwest are
slightly higher and higher areas in the northeast are slightly
lower. This effect could be important to studies focusing
on erosion and deposition of soil material, particularly if
single hillslopes are photographed. In addition, comparisons
of DSMs B2, B3 and B3* show several ‘bumps’ that
represent locally higher and lower areas. Because they are
not present in the B2/B3* comparison, these bumps are
not likely the effect of flight altitude, but are possibly
the result of different weather conditions during the
flight and instability of the aircraft caused by wind
turbulence.
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Gully-level analysis

The channel profiles in Fig. 8 show good similarities
between the location and shape of the gully channels. In
mapping campaigns, this means that results are not affected
by different flight strategies and results are reproducible. On
the other hand, the depth of the gully channel is calculated
differently in each flight, particularly A3*. The offset of
A3* compared to B3 in the profile is possibly the effect
of locally higher flight altitude causing larger image grid
cells and less points in the generated point cloud. Here,
points resembling the channel bottom may be absent, or
are in too few number and considered noise and so filtered
out. Such variation in reconstructed channel depths will
affect volumetric calculations and therefore care is strongly
advised when UAS data is used to estimate erosion rates in
such systems.

Area coverage orientation

The cell size and level of detail in the DSMs was not
affected by flight direction, and geomorphological features
are equally well represented in the surface models. With
different flight directions mean flight altitude remains the
same, and therefore also the GSD and the number of
points in the point clouds. On the other hand, the DoDs
show considerable variation in DSM elevation between
two different flight directions and it appears that flight
direction has much more impact on elevation values than
flight altitude. For example, A2* versus B2, and A3*
versus B3 in Fig. 6 represent the differences of DSMs
flown at similar mean altitude, but with a different flight
direction. Particularly in the center of the area higher,
there are elevation values with up to 15-20 cm difference.
The elevation differences between DSMs with different
flight direction are considerably larger than those caused
by, presumably, wind conditions as depicted by DoDs
between B3 and B3*. Therefore, a consistent flight direction
should be considered when planning multi-temporal flight
campaigns.

The question remains whether there is an optimal
flight direction. Some authors have proposed approaches
to reduce the effective flying time (Girardet et al. 2014),
i.e. this is the time that the UAV takes from take-off,
to landing, and to increase the energy-efficiency of the
platform (Rodriguez et al. 2016). In this approach the
authors take advantage of headwinds to minimize flight
time. Other authors (Coombes et al. 2018) argue that flying
perpendicular to the wind allows faster time-to-destination
times to be achieved. To the best of the authors knowledge
there is not a clear investigation about the effect of wind and
flight direction on area coverage. However, the literature

suggests that an online path planning approach that takes
in consideration of the wind direction, shears, and gusts,
would compensate attitude losses and drifts during the flight
(Rodriguez et al. 2016).

Comparison with other sensors

When compared to multi-temporal airborne laser altimetry
data, similar issues occur. Here different point cloud
densities or reflections at different locations result in
different surface models and inaccuracies due to filtering
and interpolation (Anders et al. 2013). With UAV imagery
now much easier and cheaper to acquire and the difference
in error for most flight scenarios for DTM production less
than 10 cm, they are a good choice for many applications.
Nevertheless, if decimeter vertical accuracy is important,
then independent secondary measurements are crucial to
ensure the quality of a UAV DSM. To some extent,
the elevation differences we found may be attributed to
systematic error due to radial distortion of the camera
described by (James and Robson 2012); incorporating
oblique images and cross flights may reduce this error.
Combining images from different altitudes may also reduce
vertical errors.

Labelling and classification

In all flights performed, the orthophoto provided enough
detail for the identification of individual vegetation patches
which could be used as input for classifications or
vegetation distribution studies (Laliberte et al. 2010).

Conclusions

This paper has demonstrated the impact of flight altitude
and direction on the quality of surface models and
orthophotos derived from low altitude aerial photography
with a UAS. Three flight altitudes and two different
flight path orientations were tested. It was shown that
UAS data products clearly capture detailed morphology
and vegetation structure. While the vertical accuracy of
DSMs does not clearly differ with increasing flight altitude,
elevation values are sensitive to different flight path
orientations. It was also shown that horizontal accuracy and
the lateral positioning of features in the orthophotos does
not change with different flight altitudes and directions.
The results suggest that SfM/MVS with UAS imagery
is suitable for mapping geomorphological features and
vegetation distribution, but for monitoring topographic
or geomorphological change special care is required to
optimize and repeat the same flight paths at each stage.
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