
Monitoring stimulated emission at the single-photon

level in one-dimensional atoms

Daniel Valente, Stefano Portolan, Gilles Nogues, Jean-Philippe Poizat,

Maxime Richard, Jean-Michel Gérard, Marcelo Santos, Alexia Auffèves
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We theoretically investigate signatures of stimulated emission at the single-photon level for a two-level atom

interacting with a one-dimensional light field. We consider the transient regime where the atom is initially excited,

and the steady-state regime where the atom is continuously driven with an external pump. The influence of pure

dephasing is studied, clearly showing that these effects can be evidenced with state-of-the-art solid-state devices.

We finally propose a scheme to demonstrate the stimulation of one optical transition by monitoring another one,

in three-level one-dimensional atoms.
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I. INTRODUCTION

Exploration of the light-matter interaction at the single-

photon level is a goal of quantum optics that has been

successfully achieved so far with emitters in high-quality-

factor microwave [1] or optical cavities [2]. High atom-field

couplings are obtained at the price of keeping the photons

trapped in the mode, which may limit their exploitation for all

practical purposes. Alternative strategies have thus emerged,

based on the coupling of the emitter to a one-dimensional

(1D) electromagnetic environment. A pioneering realization

of such a “1D atom” consisted in an atom coupled to a

leaky directional cavity [3]. Nowadays, 1D atoms can be

implemented in a wide range of physical systems, from

quantum dots (QDs) embedded in photonic wires [4], in

photonic crystals [5], or in plasmonic waveguides [6], to

superconducting qubits in circuit QED [7,8], and to atoms [9]

and molecules in tightly focused beams [10]. When probed

with a resonant field, the natural directionality of 1D atoms

allows a high mode matching to be reached between the

incoming and the scattered light, manifested by the destructive

interference of the two fields [5,8,10,11]. Equivalently, perfect

mode matching allows saturation of the emitter with a

single photon [11], so that 1D atoms have been identified

as promising single-photon transistors [6] and two-photon

gates [12].

This highly nonlinear behavior strongly motivates a study

of the properties of the system when the atomic population

is inverted and a reconsideration in the one-dimensional

geometry of the concept of stimulated emission introduced

by Einstein [13]. A search for signatures of stimulation at

the single-photon level not only provides new insights into a

fundamental concept of quantum optics, but also allows the

envisioning of appealing applications in quantum information

processing. Optimal quantum cloning machines and single-

photon adders could be implemented in these systems and offer

promising alternatives to devices based on cavity quantum

electrodynamics, where these functionalities have been probed

so far [14,15]. In this paper we theoretically characterize
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stimulation by single photons in two different regimes, namely,

the transient regime where the atom is initially excited and

the steady-state regime where the emitter is continuously

excited by an incoherent light source. Signatures of stimulated

emission are sought in the atomic population and in the

light field radiated by the atom. To study the potential of

solid-state systems to demonstrate such effects, pure dephasing

is taken into account. Finally, the possibility of exploiting

an ancillary atomic transition to monitor the stimulation is

explored.

II. MODEL

The scheme of a two-level emitter of frequency ωA

interacting with a continuum of modes inside a 1D waveguide

is pictured in Fig. 1(a). The quantized field in the Heisen-

berg picture is written E(z,t) = E(+)(z,t) + E(−)(z,t) [16],

where E(+)(z,t) = i
∑

ω ǫω{aω(t) eikz + bω(t) e−ikz}. We have

explicitly separated the forward aω from the backward bω

propagating modes [17]. The electric field per photon is

ǫω. The atomic emission is eventually stimulated by a laser

of frequency ωL injected into the waveguide. This is well

described by a coherent field αL in the guided mode of the

same frequency, the other modes being in the vacuum [18].

The coupling Hamiltonian between the field and the atomic

dipole written in the rotating-wave approximation is HI =
−ih̄

∑

ω gω[σ+(aωei(ω/c)zA + bωe−i(ω/c)zA ) − H.c.], where zA

is the position of the atom inside the waveguide, which we

further take equal to 0. The atomic operators are denoted

σ+ = |e〉〈g|, σ− = σ
†
+, and σz = (σ+σ− − σ−σ+)/2. The cou-

pling frequency is defined by gω = dǫω/h̄, where d is the

electric dipole between |g〉 and |e〉 states. In addition to

the Hamiltonian part, an incoherent pump ξ can be added

to invert the atomic population. As pictured in Fig. 1, such

a mechanism is obtained by resonantly pumping an ancilla

level |m〉 that immediately decays toward the excited level

|e〉. We also include a pure dephasing rate γ ∗ [19,20], related

to electrostatic fluctuations of the environment [21], usually

present in solid-state artificial atoms. The total decay rate

is γ = γ0 + γ1, where γ1 is the relaxation rate due to the

coupling with the 1D continuum. Unavoidable coupling to
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FIG. 1. (Color online) Level scheme of the 1D atom under study

under (a) incoherent pumping or (b) coherent two-photon excitation

in the QD case. The notations are introduced in the text.

the other modes of the 3D electromagnetic environment

gives rise to the additional rate γ0. The time evolution

of the operators is given by a set of coupled Heisenberg-

Langevin equations, written in the frame rotating at the

laser frequency in the Markovian approximation [17,18]. This

leads to the following set of equations, valid in the 1D

geometry:

d

dt
〈σ−〉 = −

(

γ + γ ∗ + ξ

2
− iδL

)

〈σ−〉 + 	 〈σz〉,
(1)

d

dt
〈σz〉 = −(γ + ξ )

(

〈σz〉 +
1

2

)

+ ξ − 	 Re[〈σ−〉],

where δL = ωL − ωA is the detuning between the atom and the

laser and Re stands for the real part. In the following, we will

always consider the resonant case, δL = 0. The Rabi frequency

	 characterizes the coupling between the atom and the

field and equals 	 = γ
√

2β
√

p, where p = |αL|2/(πρ1D
γ )

is the number of incoming photons per atomic lifetime,

ρ1D
= L/πc is the density of modes of the continuum with

length of quantization L, and β = γ1/(γ0 + γ1) quantifies the

1D character of the system. An ideal 1D atom corresponds

to β = 1, a limit almost reached in circuit QED [8]. Other

experimental setups also provide nearly ideal 1D systems,

namely, atoms in strongly dissipative cavities (β = 0.96 [3]),

and QDs in photonic nanowires (β = 0.95 [4]) or in photonic-

crystal waveguides (β = 0.98 [5]).

As far as the light field is concerned, we derive the

photodetection relation proper to the 1D geometry, valid for

all z and t > |z|/c:

E(+)(z,t) = Ea,free(z,t) + Eb,free(z,t)

+ η
{

σ−

(

t −
z

c

)

�(z) + σ−

(

t +
z

c

)

�(−z)
}

,

(2)

where we have introduced the parameter η = iǫωL

√
β/2.

The counterpropagating free field operators are

Ea,free(z,t) = i
∑

ω ǫωaω(0)e−iω(t−z/c) and Eb,free(z,t) =
i
∑

ω ǫωbω(0)e−iω(t+z/c). Finally, the expressions for the

powers γ 〈E(−)E(+)〉/ǫ2
ωL

radiated in the transmission and

FIG. 2. (Color online) Top: Excited-state population Pe(t) as

a function of time (in units of γ −1) for p = 0 (blue, monotonic

decrease), p = 1 (red, lower-frequency oscillation), and p = 10

(green, higher-frequency oscillation). Bottom: T − γp (blue, left

arrow) and R (red, right arrow; both in units of γ ) for p =
30, showing that net transmission overcomes reflection whenever

stimulated emission takes place, in the transient regime. Dashed

curves correspond to γ ∗ = 10γ . For all cases, β = 1.

reflection channels, respectively denoted T and R, are

expressed in numbers of photons per second and read

T = γp + 	 Re[〈σ−〉] +
γβ

2

(

〈σz〉 +
1

2

)

, (3)

R =
γβ

2

(

〈σz〉 +
1

2

)

, (4)

whereas the power dissipated in the leaky modes is denoted

S and is given by S = γ (1 − β)
(

〈σz〉 + 1
2

)

. The first term

in T equals the incoming laser power γp. The last term is

due to spontaneous emission and equally contributes to R
and T . It scales as the excited population Pe = 〈σz〉 + 1/2,

so that this atomic observable can be continuously monitored

by observing the reflection R or the leaky channel S. The

interference term 	Re[〈σ−〉] plays a key role in the 1D

geometry under study. It equals T − γp − R, allowing one

to compare the net transmitted power T − γp to the reflected

power R. Thus it quantifies the preferred emission channel.

This quantity also acts on the evolution of the population

Pe as it appears in Eq. (1). Following the notations of a

seminal paper by Mollow [22], this term exactly satisfies

	Re[〈σ−〉] = −W[p], where W[p] stands for the coherent

atomic absorption.

III. TRANSIENT REGIME

We first consider the transient regime where the incoherent

pump is switched off (ξ = 0), and the atom initially prepared

in the excited state |e〉 is driven by a cw resonant field p. The

evolution of the population Pe(t) is given by solving Eqs. (1),

which correspond to standard Bloch equations in the case

ξ = 0 under study. It is plotted in Fig. 2 with β = 1. The case

p = 0 corresponds to the damped regime. It is characterized

by an exponential decay, typical for the spontaneous emission

of a photon into the waveguide. As can be seen in the figure,

increasing the pump power stimulates this emission. However,
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it appears that stimulated emission does not make the atomic

decay faster, but reversible: this is the nonlinear regime of

Bloch equations, characterized by the coherent exchange of

photons between the atom and the field (Rabi oscillations) at

the rate 	. This regime is reached when 	 overcomes the

typical dephasing and damping rates γ and γ ∗. When γ ∗ = 0,

this condition simplifies to p ∝ β−1 [see Eq. (1)], which

corresponds to p ∼ 1 in the ideal 1D case plotted in the figure.

Therefore, a single photon per lifetime is enough to saturate a

1D atom, as already evidenced in a different context [11,12].

If β < 1, a higher pump power will be necessary to reach the

nonlinear regime. Single-photon sensitivity is also altered by

pure dephasing, as is shown in Fig. 2 where we have plotted

the population with γ ∗ = 10γ , a typical value for quantum

dots [20] (note that this is an upper bound, pure dephasing

rates as low as γ ∗ = 0.15γ being currently reached in circuit

QED [8]). Still, it appears that with realistic parameters, the

power needed to reach stimulation remains of the order of

a few photons per lifetime, so that the great sensitivity of

the device is preserved. Finally, note that the observed Rabi

oscillation is classical and does not lead to any entanglement

with the field, in contrast to the case of an atom coupled to a

monomode cavity [1], another medium showing single-photon

sensitivity. In that sense, 1D geometry is similar to low-

quality-factor Ramsey zones used in microwave cavity QED

experiments [23].

It is also interesting to observe the evolution of the radiated

fields in the regime of stimulated emission. This is plotted

in Fig. 2 for p = 30. Rabi oscillations are also visible in the

reflected and transmitted fields. In particular, one observes that

each decrease inR corresponds to the stimulated emission of a

photon, which feeds the transmission channel. These processes

have T − γp > R, confirming that the “stimulated channel”

T is favored. Note that, on the other hand, if the atom is

initially prepared in the ground state |g〉, emission is favored

in the reflection channel at the initial time, a property that can

be exploited to develop single-photon transistors [6,10].

IV. STEADY-STATE REGIME

Let us now concentrate on the case where the atom is contin-

uously driven by an incoherent pump ξ and study the influence

of the resonant light on the steady-state atomic population Pe

and radiated fields R and T − γp. The population is pictured

in Fig. 3 as a function of p. We have plotted the results for

two different values of the incoherent pump ξ = 3γ and 15γ ,

yielding two different population inversions (Pe > Pg) when

p = 0. We also show the net total rate of photons emitted by the

atom, N = T − γp + R + S. Moreover, we have defined and

plotted the ratios βR (βT ) of photons emitted in the reflection

(transmission) channel in the following way: βR = R/N ,

βT = (T − γp)/N . These quantities measure the propensity

of the atom to emit in the reflection (transmission) channels

and appear as natural figures of merit for stimulated emission.

Two regimes can be observed in the figure. A vanishing pump

p → 0 gives rise to an incoherent regime characterized by the

spontaneous emission of photons. The excited-state population

reads Pe = ξ

γ+ξ
and the net total rate of emitted photons is

N = γPe. In this regime, no channel is favored, and the net

transmitted and reflected fields are equal. Increasing the pump

FIG. 3. (Color online) Top: Steady-state population (red, left

arrows) of the excited level (proportional to reflected power) as a

function of the resonant pump for ξ = 3γ (light red, lower) and

15γ (dark red, upper). Increasing net rate of emitted photons N

(green, right arrow; in units of γ ) ranging from γPe to ξ/2 (plotted

with ξ = 3γ ). Bottom: Ratios βT (blue, upper) and βR (red, lower)

showing predominance of emission in the transmission channel for

p > 1. Dashed curves: γ ∗ = 10γ . We took β = 1.

p to arbitrarily high values sets up the coherent regime of

Rabi oscillations. The excited-state population Pe decreases,

eventually becoming equal to the ground-state population Pg ,

which is the usual limit of Bloch equations when the atom is

saturated [18]. Simultaneously, the net total rate of photons

increases to N = ξ/2. This is an unusual situation where the

emitted light power does not follow the same evolution as the

atomic population. As a matter of fact, the rate N represents

the rate of photons exchanged between the atom and the

field, which scales as the Rabi frequency 	 and increases

with the pump power p. Simultaneously, the transmission

channel is markedly favored with respect to the reflection

channel (βT > βR). The transition between these two regimes

happens when p > pth = (γ+γ ∗+ξ )(γ+ξ )

4βγ 2 , which simplifies to

pth = 1
4
(1 + ξ

γ
)2 for β = 1 and γ ∗ ≪ γ . This confirms that

Rabi oscillations appear when coherent processes, quantified

by p, overcome incoherent ones, quantified by ξ . As in

the transient case, pure dephasing and lower β increase the

threshold needed to reach the coherent regime, up to values

that remain of the order of a few photons per lifetime in the

physical systems modeled.

V. EXPERIMENTAL PROPOSAL FOR INDIRECT

MEASUREMENT OF STIMULATED EMISSION

Measurement of the ratios βR and βT is experimentally

quite demanding. As a matter of fact, it requires the ability

to quantify the total power radiated by the atom, in particular

the net transmitted power T − γp, and hence to filter the

pump to extract a tiny atomic emission. Therefore, we propose

an experimentally feasible way to measure this quantity, by

exploiting a third atomic level |XX〉 as pictured in Fig. 1(b).

This three-level structure can model the biexcitonic and the

excitonic transitions of a quantum dot, a terminology that

we shall use from now on without losing the generality of

the scheme. Population inversion on the excitonic transition

(PX > Pg) is reached by resonantly pumping a biexciton

in the dot using the two-photon-absorption technique. This
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FIG. 4. (Color online) Top: Populations (left arrows) PX (blue,

upper) and PXX (green, lower) of the three-level system vs p. Net

rate of photon emission N (black, right arrow; in units of γ ) in

the exciton transition. Bottom: Comparison between the ratios of

emission given by the two (βR , red, lower) and three (β3L
R , blue,

upper) levels, assuming ξ ∼ 3γ and �2/� ∼ 4ŴX. In both cases,

γ ∗ = 0 and β = 1.

mechanism can be described by an effective Hamiltonian

H2ph = h̄�2/�(|XX〉〈g| e−iνt + H.c.), where � = (EXX −
EX)/2 and � is the Rabi frequency of the pump [24]. As usual,

Lindbladians describe the decays |XX〉 → |X〉, with rate ŴXX,

and |X〉 → |g〉, with rate ŴX. The populations of the excitonic

PX and biexcitonic states PXX are computed in the steady-state

regime, as a function of the resonant probe p. The results are

plotted in Fig. 4. When p = 0, the presence of a large pump

power �2/� > ŴXX leads to equalization of the populations

of the ground and biexcitonic states, whereas detailed balance

conditions require PX/PXX = ŴXX/ŴX. The usual quantum

dot parameters satisfy ŴXX ≈ 2ŴX [4], leading to PXX = Pg =
1/4 and PX = 1/2. Increasing the probe power p leads to the

depletion of the excitonic level because of stimulated emission,

and thus to the increase of the steady-state biexcitonic popu-

lation, as is shown in Fig. 4. This increase can be monitored

by measuring the rate of photon emission ŴXXPXX at the

biexcitonic frequency, which provides an easily observable

signature of stimulated emission at the single-photon level.

Moreover, we have verified that ŴXXPXX = ŴXPX − W[p] =
N , where W[p] is the interference term between the probe

and the light emitted at the excitonic frequency, as defined

above. Namely, the rate of photon emission in the biexcitonic

line exactly equals the rate N emitted in the excitonic one,

taking into account stimulated processes. Stimulated emission

of the excitonic transition can thus be simply monitored by

measuring the rate of photon emission at the biexcitonic

frequency. This rate can be used to build the ratio βR defined

above, without having to measure the net transmitted power.

This is also represented in Fig. 4, where we have plotted β3L
R =

ŴX
2

PX

ŴXXPXX
, the index 3L standing for three levels. For the sake of

comparison, we have plotted on the same figure the quantity

βR defined in the case of a two-level atom. The equivalence

between the models is clearly shown in the coincidence of

the two curves for low power p (	 = γ
√

β
√

2p < �2/�).

A divergence becomes unavoidable when p is strong enough

to generate Autler-Townes splitting [25] of the ground level.

The biexcitonic transition thus becomes out of resonance with

the � driving field. So the population of the biexciton state

drastically decreases, making the ratio β3L
R arbitrarily large and

equalizing exciton and ground-state populations. A possible

drawback of experiments performed with quantum dots can

be imperfect two-photon absorption, leading to incoherent

feeding of the excitonic level via phonons, even for large

� [26]. However, a recent experimental work [27] shows

that the two-photon transition can be made very clean, so

that the incoherent exciton pumping is negligible in this case.

Finally, note that a scheme to fully protect entanglement

has been proposed using the same mechanism of biexcitonic

pumping and readouts of the light emitted in each possible

transition [28].

VI. CONCLUSION

In conclusion, we have evidenced signatures of stimulated

emission at the single-photon level, giving rise to potentially

observable effects with state-of-the-art solid-state atomic de-

vices interacting with 1D light fields. In particular, we propose

an experiment to probe the stimulated (optical) transition,

based on the monitoring of an ancillary transition. Properties

of 1D atoms evidenced in this work may be exploited to

implement fundamental quantum tasks, such as single-photon

optimal cloning or single-photon amplification.
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