65 research outputs found

    Airborne gravity and precise positioning for geologic applications

    Get PDF
    Airborne gravimetry has become an important geophysical tool primarily because of advancements in methodology and instrumentation made in the past decade. Airborne gravity is especially useful when measured in conjunction with other geophysical data, such as magnetics, radar, and laser altimetry. The aerogeophysical survey over the West Antarctic ice sheet described in this paper is one such interdisciplinary study. This paper outlines in detail the instrumentation, survey and data processing methodology employed to perform airborne gravimetry from the multiinstrumented Twin Otter aircraft. Precise positioning from carrier-phase Global Positioning System (GPS) observations are combined with measurements of acceleration made by the gravity meter in the aircraft to obtain the free-air gravity anomaly measurement at aircraft altitude. GPS data are processed using the Kinematic and Rapid Static (KARS) software program, and aircraft vertical acceleration and corrections for gravity data reduction are calculated from the GPS position solution. Accuracies for the free-air anomaly are determined from crossover analysis after significant editing (2.98 mGal rms) and from a repeat track (1.39 mGal rms). The aerogeophysical survey covered a 300,000 km2 region in West Antarctica over the course of five field seasons. The gravity data from the West Antarctic survey reveal the major geologic structures of the West Antarctic rift system, including the Whitmore Mountains, the Byrd Subglacial Basin, the Sinuous Ridge, the Ross Embayment, and Siple Dome. These measurements, in conjunction with magnetics and ice-penetrating radar, provide the information required to reveal the tectonic fabric and history of this important region

    Morphology and tectonics of the Mid-Atlantic Ridge, 7°–12°S

    No full text
    We present swath bathymetric, gravity, and magnetic data from the Mid-Atlantic Ridge between the Ascension and the Bode Verde fracture zones, where significant ridge–hot spot interaction has been inferred. The ridge axis in this region may be divided into four segments. The central two segments exhibit rifted axial highs, while the northernmost and southernmost segments have deep rift valleys typical of slow-spreading mid-ocean ridges. Bathymetric and magnetic data indicate that both central segments have experienced ridge jumps since ~1 Ma. Mantle Bouguer anomalies (MBAs) derived from shipboard free air gravity and swath bathymetric data show deep subcircular lows centered on the new ridge axes, suggesting that mantle flow has been established beneath the new spreading centers for at least ~1 Myr. Inversion of gravity data indicates that crustal thicknesses vary by ~4 km along axis, with the thickest crust occurring beneath a large axial volcanic edifice. Once the effects of lithospheric aging have been removed, a model in which gravity variations are attributed entirely to crustal thickness variations is more consistent with data from an axis-parallel seismic line than a model that includes additional along-axis variations in mantle temperature. Both geophysical and geochemical data from the region may be explained by the melting of small (<200 km) mantle chemical heterogeneities rather than elevated temperatures. Therefore, there may be no Ascension/Circe plume

    Crustal structure of the propagating TAMMAR ridge segment on the Mid-Atlantic Ridge, 21.5°N

    Get PDF
    Active ridge propagation frequently occurs along spreading ridges and profoundly affects ridge crest segmentation over time. The mechanisms controlling ridge propagation, however, are poorly understood. At the slow spreading Mid-Atlantic Ridge at 21.5°N a seismic refraction and wide-angle reflection profile surveyed the crustal structure along a segment controlled by rapid ridge propagation. Tomographic traveltime inversion of seismic data suggests that the crustal structure along the ridge axis is controlled by melt supply; thus, crust is thickest, 8 km, at the domed segment center and decreases in thickness toward both segment ends. However, thicker crust is formed in the direction of ridge propagation, suggesting that melt is preferentially transferred toward the propagating ridge tip. Further, while seismic layer 2 remains constant along axis, seismic layer 3 shows profound changes in thickness, governing variations in total crustal thickness. This feature supports mantle upwelling at the segment center. Thus, fluid basaltic melt is redistributed easily laterally, while more viscose gabbroic melt tends to crystallize and accrete nearer to the locus of melt supply. The onset of propagation seems to have coincided with the formation of thicker crust, suggesting that propagation initiation might be due to changes in the melt supply. After a rapid initiation a continuous process of propagation was established. The propagation rate seems to be controlled by the amount of magma that reaches the segment ends. The strength of upwelling may govern the evolution of ridge segments and hence ultimately controls the propagation length

    Chronic kidney disease after liver, cardiac, lung, heart–lung, and hematopoietic stem cell transplant

    Get PDF
    Patient survival after cardiac, liver, and hematopoietic stem cell transplant (HSCT) is improving; however, this survival is limited by substantial pretransplant and treatment-related toxicities. A major cause of morbidity and mortality after transplant is chronic kidney disease (CKD). Although the majority of CKD after transplant is attributed to the use of calcineurin inhibitors, various other conditions such as thrombotic microangiopathy, nephrotic syndrome, and focal segmental glomerulosclerosis have been described. Though the immunosuppression used for each of the transplant types, cardiac, liver and HSCT is similar, the risk factors for developing CKD and the CKD severity described in patients after transplant vary. As the indications for transplant and the long-term survival improves for these children, so will the burden of CKD. Nephrologists should be involved early in the pretransplant workup of these patients. Transplant physicians and nephrologists will need to work together to identify those patients at risk of developing CKD early to prevent its development and progression to end-stage renal disease

    Bromination of double-walled carbon nanotubes

    Get PDF
    Double-walled carbon nanotubes (DWCNTs) synthesized by catalytic chemical vapor deposition (CCVD) have been functionalized by bromine vapor at room temperature. At least two different bromine species were detected in the product using X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis. The primary form is negatively charged Br2 molecules exhibiting an intense resonance at ∼238 cm−1 in the Raman spectrum. The electron transfer from the nanotubes to the adsorbed molecules is detected from C 1s XPS and near-edge X-ray absorption fine structure spectra. The optical absorption spectra reveal that although the metallic nanotubes are more reactive to Br2, the outer semiconducting nanotubes also readily interact with Br2 adsorbates. The secondary bromine form is attributed to covalent C-Br bonding, and its possible sources are discussed in the light of quantum-chemical calculations. Analysis of the XPS, Raman, and optical absorption spectra of the Br-DWCNTs annealed at 100-170 ° C indicates preservation of a part of bromine molecules in samples that affects the electronic and vibration properties of nanotubes

    Joint Compilation of Russian and US Navy Aeromagnetic Data in the Central Arctic Seas

    Get PDF
    • …
    corecore