38 research outputs found

    S-Wave Quarkonia in Potential Models

    Get PDF
    We discuss S-wave quarkonia correlators and spectral function using the Wong-potential, and show that these do not agree with the lattice results.Comment: based on talk presented at Strangeness in Quark Matter, UCLA, March 26-31, 200

    Induced Universal Properties and Deconfinement

    Full text link
    We propose a general strategy to determine universal properties induced by a nearby phase transition on a non-order parameter field. A general renormalizable Lagrangian is used, which contains the order parameter and a non-order parameter field, and respects all the symmetries present. We investigate the case in which the order parameter field depends only on space coordinates and the case in which this field is also time dependent. We find that the spatial correlators of the non-order parameter field, in both cases, are infrared dominated and can be used to determine properties of the phase transition. We predict a universal behavior for the screening mass of a generic singlet field, and show how to extract relevant information from such a quantity. We also demonstrate that the pole mass of the non-order parameter field is not infrared sensitive. Our results can be applied to any continuous phase transition. As an example we consider the deconfining transition in pure Yang-Mills theory, and show that our findings are supported by lattice data. Our analysis suggests that monitoring the spatial correlators of different hadron species, more specifically the derivatives of these, provides an efficient and sufficient way to experimentally uncover the deconfining phase transition and its features.Comment: Added computational details and improved the text. The results are unchange

    Critical Behavior of Non Order-Parameter Fields

    Get PDF
    We show that all of the relevant features of a phase transition can be determined using a non order parameter field which is a physical state of the theory. This fact allows us to understand the deconfining transition of the pure Yang-Mills theory via the physical excitations rather than using the Polyakov loop.Comment: RevTeX, 4-pages, 1 figur

    Progress in finite temperature lattice QCD

    Get PDF
    I review recent progress in finite temperature lattice calculations, including the determination of the transition temperature, equation of state, screening of static quarks and meson spectral functions.Comment: 8 pages, LaTeX, uses iopart.cls, invited talk presented at Strangeness in Quark Matter 2007 (SQM 2007), Levoca, Slovakia, June 24-29, 200

    Chiral Phase Transition within Effective Models with Constituent Quarks

    Get PDF
    We investigate the chiral phase transition at nonzero temperature TT and baryon-chemical potential μB\mu_B within the framework of the linear sigma model and the Nambu-Jona-Lasinio model. For small bare quark masses we find in both models a smooth crossover transition for nonzero TT and μB=0\mu_B=0 and a first order transition for T=0 and nonzero μB\mu_B. We calculate explicitly the first order phase transition line and spinodal lines in the (T,μB)(T,\mu_B) plane. As expected they all end in a critical point. We find that, in the linear sigma model, the sigma mass goes to zero at the critical point. This is in contrast to the NJL model, where the sigma mass, as defined in the random phase approximation, does not vanish. We also compute the adiabatic lines in the (T,μB)(T,\mu_B) plane. Within the models studied here, the critical point does not serve as a ``focusing'' point in the adiabatic expansion.Comment: 22 pages, 18 figure

    Effective Lagrangians for Orientifold Theories

    Full text link
    We construct effective Lagrangians of the Veneziano-Yankielowicz (VY) type for two non-supersymmetric theories which are orientifold daughters of supersymmetric gluodynamics (containing one Dirac fermion in the two-index antisymmetric or symmetric representation of the gauge group). Since the parent and daughter theories are planar equivalent, at N\to\infty the effective Lagrangians in the orientifold theories basically coincide with the bosonic part of the VY Lagrangian. We depart from the supersymmetric limit in two ways. First, we consider finite (albeit large) values of N. Then 1/N effects break supersymmetry. We suggest seemingly the simplest modification of the VY Lagrangian which incorporates these 1/N effects, leading to a non-vanishing vacuum energy density. We analyze the spectrum of the finite-N non-supersymmetric daughters. For N=3 the two-index antisymmetric representation (one flavor) is equivalent to one-flavor QCD. We show that in this case the scalar quark-antiquark state is heavier than the corresponding pseudoscalar state, `` eta' ''. Second, we add a small fermion mass term. The fermion mass term breaks supersymmetry explicitly. The vacuum degeneracy is lifted. The parity doublets split. We evaluate the splitting. Finally, we include the theta-angle and study its implications.Comment: LaTeX, 21 page

    QCD-like theories at nonzero temperature and density

    Full text link
    We investigate the properties of hot and/or dense matter in QCD-like theories with quarks in a (pseudo)real representation of the gauge group using the Nambu-Jona-Lasinio model. The gauge dynamics is modeled using a simple lattice spin model with nearest-neighbor interactions. We first keep our discussion as general as possible, and only later focus on theories with adjoint quarks of two or three colors. Calculating the phase diagram in the plane of temperature and quark chemical potential, it is qualitatively confirmed that the critical temperature of the chiral phase transition is much higher than the deconfinement transition temperature. At a chemical potential equal to half of the diquark mass in the vacuum, a diquark Bose-Einstein condensation (BEC) phase transition occurs. In the two-color case, a Ginzburg-Landau expansion is used to study the tetracritical behavior around the intersection point of the deconfinement and BEC transition lines, which are both of second order. We obtain a compact expression for the expectation value of the Polyakov loop in an arbitrary representation of the gauge group (for any number of colors), which allows us to study Casimir scaling at both nonzero temperature and chemical potential.Comment: JHEP class, 31 pages, 7 eps figures; v2: error in Eq. (3.11) fixed, two references added; matches published versio

    Thermal Dileptons at LHC

    Get PDF
    We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb collisions at LHC. Hadronic emission in the low-mass region is calculated using in-medium spectral functions of light vector mesons within hadronic many-body theory. In the intermediate-mass region thermal radiation from the Quark-Gluon Plasma, evaluated perturbatively with hard-thermal loop corrections, takes over. An important source over the entire mass range are decays of correlated open-charm hadrons, rendering the nuclear modification of charm and bottom spectra a critical ingredient.Comment: 2 pages, 2 figures, contributed to Workshop on Heavy Ion Collisions at the LHC: Last Call for Predictions, Geneva, Switzerland, 14 May - 8 Jun 2007 v2: acknowledgment include

    Disoriented Chiral Condensate: Theory and Experiment

    Full text link
    It is thought that a region of pseudo-vacuum, where the chiral order parameter is misaligned from its vacuum orientation in isospin space, might occasionally form in high energy hadronic or nuclear collisions. The possible detection of such disoriented chiral condensate (DCC) would provide useful information about the chiral structure of the QCD vacuum and/or the chiral phase transition of strong interactions at high temperature. We review the theoretical developments concerning the possible DCC formation in high-energy collisions as well as the various experimental searches that have been performed so far. We discuss future prospects for upcoming DCC searches, e.g. in high-energy heavy-ion collision experiments at RHIC and LHC.Comment: 120 pages, 52 figures. Uses elsart.cls. To appear in Physics Reports. Minor corrections, references adde
    corecore