9,581 research outputs found
Collisional excitation of water by hydrogen atoms
We present quantum dynamical calculations that describe the rotational
excitation of HO due to collisions with H atoms. We used a recent, high
accuracy potential energy surface, and solved the collisional dynamics with the
close-coupling formalism, for total energies up to 12 000 cm. From these
calculations, we obtained collisional rate coefficients for the first 45 energy
levels of both ortho- and para-HO and for temperatures in the range T =
5-1500 K. These rate coefficients are subsequently compared to the values
previously published for the HO / He and HO / H collisional
systems. It is shown that no simple relation exists between the three systems
and that specific calculations are thus mandatory
Upper bound on the density of Ruelle resonances for Anosov flows
Using a semiclassical approach we show that the spectrum of a smooth Anosov
vector field V on a compact manifold is discrete (in suitable anisotropic
Sobolev spaces) and then we provide an upper bound for the density of
eigenvalues of the operator (-i)V, called Ruelle resonances, close to the real
axis and for large real parts.Comment: 57 page
South America: a reservoir of continental carbon - first estimate of changes since 18,000 yr BP
By using geographic and palaeogeographic sketches established for the present situation (before recent deforestation) and for the glacial maximum (about 15,000-18,000 BP) we can estimate the possible total biomass (phytomass) of the South American continent. According to the biomass density used in this first estimate for ten major ecosystems, the results show a possible increase from 140 Gt of carbon (glacial maximum) to 214 Gt C (preindustrial) for the phytomass, and 120 to 180 Gt C for the soils. These preliminary results are possibly only a 60 or 70 percent approximate estimate and could be modified with computation using other palaeogeographic models or another biomass density. It is therefore to underline the urgent need of more field biomass measurements, ecosystems mappings, and palaeostudies to evaluate the part of South America as a future possible sink for the atmospheric carbon dioxide. The Amazonian forest makes of South America an important continental reservoir of carbon for the planet Earth. This continent represents consequently a key zone for the research and knowledge of changes in the biogeochemical cycle of carbon. In order to evaluate more precisely the role it plays we estimated the approximate quantities of carbon in the total phytomass and the carbon in soils for each of the ecosystems represented in Figure 1, both for Present and Last Glacial Maximum landscapes
High power semiconductor switches in the 12 kV, 50 kA pulse generator of the SPS beam dump kicker system
Horizontal deflection of the beam in the dump kicker system of the CERN SPS accelerator is obtained with a series of fast pulsed magnets. The high current pulses of 50 kA per magnet are generated with capacitor discharge type generators which, combined with a resistive free-wheel diode circuit, deliver a critically damped half-sine current with a rise-time of 25 ms. Each generator consists of two 25 kA units, connected in parallel to a magnet via a low inductance transmission line
High-energy acceleration phenomena in extreme radiation-plasma interactions
We simulate, using a particle-in-cell code, the chain of acceleration
processes at work during the Compton-based interaction of a dilute electron-ion
plasma with an extreme-intensity, incoherent gamma-ray flux with a photon
density several orders of magnitude above the particle density. The plasma
electrons are initially accelerated in the radiative flux direction through
Compton scattering. In turn, the charge-separation field from the induced
current drives forward the plasma ions to near-relativistic speed and
accelerates backwards the non-scattered electrons to energies easily exceeding
those of the driving photons. The dynamics of those energized electrons is
determined by the interplay of electrostatic acceleration, bulk plasma motion,
inverse Compton scattering and deflections off the mobile magnetic fluctuations
generated by a Weibel-type instability. The latter Fermi-like effect notably
gives rise to a forward-directed suprathermal electron tail. We provide simple
analytical descriptions for most of those phenomena and examine numerically
their sensitivity to the parameters of the problem
Plant sphingolipids: their importance in cellular organization and adaption
Sphingolipids and their phosphorylated derivatives are ubiquitous bio-active components of cells. They are structural elements in the lipid bilayer and contribute to the dynamic nature of the membrane. They have been implicated in many cellular processes in yeast and animal cells, including aspects of signaling, apoptosis, and senescence. Although sphingolipids have a better defined role in animal systems, they have been shown to be central to many essential processes in plants including but not limited to, pollen development, signal transduction and in the response to biotic and abiotic stress. A fuller understanding of the roles of sphingolipids within plants has been facilitated by classical biochemical studies and the identification of mutants of model species. Recently the development of powerful mass spectrometry techniques hailed the advent of the emerging field of lipidomics enabling more accurate sphingolipid detection and quantitation. This review will consider plant sphingolipid biosynthesis and function in the context of these new developments. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner
On the influence of collisional rate coefficients on the water vapour excitation
Water is a key molecule in many astrophysical studies. Its high dipole moment
makes this molecule to be subthermally populated under the typical conditions
of most astrophysical objects. This motivated the calculation of various sets
of collisional rate coefficients (CRC) for HO (with He or H) which are
necessary to model its rotational excitation and line emission. We performed
accurate non--local non--LTE radiative transfer calculations using different
sets of CRC in order to predict the line intensities from transitions that
involve the lowest energy levels of HO (E 900 K). The results obtained
from the different CRC sets are then compared using line intensity ratio
statistics. For the whole range of physical conditions considered in this work,
we obtain that the intensities based on the quantum and QCT CRC are in good
agreement. However, at relatively low H volume density ((H)
10 cm) and low water abundance ((HO) 10), these
physical conditions being relevant to describe most molecular clouds, we find
differences in the predicted line intensities of up to a factor of 3 for
the bulk of the lines. Most of the recent studies interpreting early Herschel
Space Observatory spectra used the QCT CRC. Our results show that although the
global conclusions from those studies will not be drastically changed, each
case has to be considered individually, since depending on the physical
conditions, the use of the QCT CRC may lead to a mis--estimate of the water
vapour abundance of up to a factor of 3
Giant Anisotropy of Spin-Orbit Splitting at the Bismuth Surface
We investigate the bismuth (111) surface by means of time and angle resolved
photoelectron spectroscopy. The parallel detection of the surface states below
and above the Fermi level reveals a giant anisotropy of the Spin-Orbit (SO)
spitting. These strong deviations from the Rashba-like coupling cannot be
treated in perturbation theory. Instead, first
principle calculations could accurately reproduce the experimental dispersion
of the electronic states. Our analysis shows that the giant anisotropy of the
SO splitting is due to a large out-of plane buckling of the spin and orbital
texture.Comment: 5 pages, 4 figure
- …