888 research outputs found

    Instantaneous Capture and Mineralization of Flue Gas Carbon Dioxide: Pilot Scale Study

    Get PDF
    Multiple CO2 capture and storage (CCS) processes are required to address anthropogenic CO2 problems. However, a method which can directly capture and mineralize CO2 at a point source, under actual field conditions, has advantages and could help offset the cost associated with the conventional CCS technologies. The mineral carbonation (MC), a process of converting CO2 into stable minerals (mineralization), has been studied extensively to store CO2. However, most of the MC studies have been largely investigated at laboratory scale. Objectives of this research were to develop a pilot scale AMC (accelerated mineral carbonation) process and test the effects of flue gas moisture content on carbonation of fly ash particles. A pilot scale AMC process consisting of a moisture reducing drum (MRD), a heater/humidifier, and a fluidized-bed reactor (FBR) was developed and tested by reacting flue gas with fly ash particles at one of the largest coal-fired power plants (2120 MW) in the USA. The experiments were conducted over a period of 2 hr at ~ 300 SCFM flow-rates, at a controlled pressure (115.1 kPa), and under different flue gas moisture contents (2-16%). The flue gas CO2 and SO2 concentrations were monitored before and during the experiments by an industrial grade gas analyzer. Fly ash samples were collected from the reactor sample port from 0-120 minutes and analyzed for total inorganic carbon (C), sulfur (S), and mercury (Hg). From C, S, and Hg concentrations, %calcium carbonate (CaCO3), %sulfate (SO42-), and %mercury carbonate (HgCO3) were calculated, respectively. Results suggested significant mineralization of flue gas CO2, SO2, and Hg within 10-15 minutes of reaction. Among different moisture conditions, ~16% showed highest conversion of flue gas CO2 and SO2 to %CaCO3 and %SO42- in fly ash samples. For example, an increase of almost 4% in CaCO3 content of fly ash was observed. Overall, the AMC process is cost-effective with minimum carbon footprint and can be retrofitted to coal fired power plants (existing and/or new) as a post-combustion unit to minimize flue gas CO2, SO2, and Hg emissions into the atmosphere. Used in conjunction with capture and geologic sequestration, the AMC process has the potential to reduce overall cost associated with CO2 separation/compression/transportation/pore space/brine water treatment. It could also help protect sensitive amines and carbon filters used in flue gas CO2 capture and separation process and extend their life

    Optimization of conical antenna array synthesis using modified cuckoo search algorithm

    Get PDF
    This thesis presents a modelling of conical antenna array (CAA) and synthesizing this array for a radiation pattern using modified cuckoo algorithm (MCS). Conventional arrays are also taken up as a preliminary study and optimisation of basic geometrics like linear and circular antenna arrays. The modelling carried out by tuning the antenna array parameters like amplitude excitation, complex amplitude excitation and angular distance. Analysis on the conventional and conformal geometries are carried out aiming for a desired pattern. Analysed simulation results gives the insight that, modelled conical array gives the pattern comprising of directivity, HPBW and SLL. Further commercial software package (CST) is used to design a working prototype model. The practical element chosen for the CST model is a dipole patch. The proposed technique is verified with the publishes literature results

    Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations

    Full text link
    Cake cutting is one of the most fundamental settings in fair division and mechanism design without money. In this paper, we consider different levels of three fundamental goals in cake cutting: fairness, Pareto optimality, and strategyproofness. In particular, we present robust versions of envy-freeness and proportionality that are not only stronger than their standard counter-parts but also have less information requirements. We then focus on cake cutting with piecewise constant valuations and present three desirable algorithms: CCEA (Controlled Cake Eating Algorithm), MEA (Market Equilibrium Algorithm) and CSD (Constrained Serial Dictatorship). CCEA is polynomial-time, robust envy-free, and non-wasteful. It relies on parametric network flows and recent generalizations of the probabilistic serial algorithm. For the subdomain of piecewise uniform valuations, we show that it is also group-strategyproof. Then, we show that there exists an algorithm (MEA) that is polynomial-time, envy-free, proportional, and Pareto optimal. MEA is based on computing a market-based equilibrium via a convex program and relies on the results of Reijnierse and Potters [24] and Devanur et al. [15]. Moreover, we show that MEA and CCEA are equivalent to mechanism 1 of Chen et. al. [12] for piecewise uniform valuations. We then present an algorithm CSD and a way to implement it via randomization that satisfies strategyproofness in expectation, robust proportionality, and unanimity for piecewise constant valuations. For the case of two agents, it is robust envy-free, robust proportional, strategyproof, and polynomial-time. Many of our results extend to more general settings in cake cutting that allow for variable claims and initial endowments. We also show a few impossibility results to complement our algorithms.Comment: 39 page

    Social Welfare in One-Sided Matching Mechanisms

    Full text link
    We study the Price of Anarchy of mechanisms for the well-known problem of one-sided matching, or house allocation, with respect to the social welfare objective. We consider both ordinal mechanisms, where agents submit preference lists over the items, and cardinal mechanisms, where agents may submit numerical values for the items being allocated. We present a general lower bound of Ω(n)\Omega(\sqrt{n}) on the Price of Anarchy, which applies to all mechanisms. We show that two well-known mechanisms, Probabilistic Serial, and Random Priority, achieve a matching upper bound. We extend our lower bound to the Price of Stability of a large class of mechanisms that satisfy a common proportionality property, and show stronger bounds on the Price of Anarchy of all deterministic mechanisms

    Chronic Paracetamol Treatment Influences Indices of Reactive Oxygen Species Accumulation in the Aging Fischer 344 X Brown Norway Rat Aorta

    Get PDF
    Previous reports have demonstrated that increased levels of reactive oxygen species (ROS) and alterations in cell signaling characterize aging in the Fischer 344 X Brown Norway (FBN) rat aorta. Other work has suggested that increases in ROS may be related to vascular wall thickening and the development of hypertension. Paracetamol (acetaminophen) is a potent antioxidant that has been found to diminish free radicals in ischemia-reperfusion studies. However, it remains unclear whether chronic paracetamol administration influences signaling or ROS accumulation in the aging aorta. FBN rats (27 months old; n=8) were subjected to 6 months of treatment with a therapeutic dose of paracetamol (30 mg/kg/day) and compared to age-matched untreated FBN rat controls (n=8). Compared to measurements in the aortae of 6-month old animals, tunica media thickness, tissue superoxide levels, and protein oxidation levels were 38 ± 7%, 92 ± 31%, and 7 ± 2% higher in the aortae of 33-month control animals (p ≤0.05). Chronic paracetamol treatment decreased tunica media thickness and the amount of oxidized protein by 13 ± 4% and 30 ± 1%, respectively (p ≤0.05). This finding of diminished aortic thickening was associated with increased phosphorylation (activation) of the mitogen activated protein kinases and diminished levels of the anti-apoptotic protein Bcl-2. Taken together, these data suggest that chronic paracetamol treatment may decrease the deleterious effects of aging in the FBN rat aorta

    The First National Study of Neighborhood Parks

    Get PDF
    An extensive infrastructure of neighborhood parks supports leisure time physical activity in most U.S. cities; yet, most Americans do not meet national guidelines for physical activity. Neighborhood parks have never been assessed nationally to identify their role in physical activity

    A new approach to numerical characterisation of wear particle surfaces in three-dimensions for wear study

    Get PDF
    In the wear and tear process of synovial joints, wear particles generated and released from articular cartilage within the joints have surface topography and mechanical property which can be used to reveal wear conditions. Three-dimensional (3D) particle images acquired using laser scanning confocal microscopy (LSCM) contain appropriate surface information for quantitatively characterizing the surface morphology and changes to seek a further understanding of the wear process and wear features. This paper presents a new attempt on the 3D numerical characterisation of wear particle surfaces using the field and feature parameter sets which are defined in ISO/FDIS 25178-2. Based on the innovative pattern recognition capability, the feature parameters are, for the first time, employed for quantitative analysis of wear debris surface textures. Through performing parameter classification, ANOVA analysis and correlation analysis, typical changing trends of the surface transformation of the wear particles along with the severity of wear conditions and osteoarthritis (OA) have been observed. Moreover, the feature parameters have shown a significant sensitivity with the wear particle surfaces texture evolution under OA development. A correlation analysis of the numerical analysis results of cartilage surface texture variations and that of their wear particles has been conducted in this study. Key surface descriptors have been determined. Further research is needed to verify the above outcomes using clinic samples

    Simple geometry tribological study of osteochondral graft implantation in the knee

    Get PDF
    Robust preclinical test methods involving tribological simulations are required to investigate and understand the tribological function of osteochondral repair interventions in natural knee tissues. The aim of this study was to investigate the effects of osteochondral allograft implantation on the local tribology (friction, surface damage, wear and deformation) of the tissues in the natural knee joint using a simple geometry, reciprocating pin-on-plate friction simulator. In addition, the study aimed to assess the ability of osteochondral grafts to restore a low surface damage, deformation and wear articulation when compared to the native state. A method was developed to characterise and quantify surface damage wear and deformation of the opposing cartilage-bone pin surface using a non-contacting optical profiler (Alicona Infinite Focus). Porcine 12 mm diameter cartilage-bone pins were reciprocated against bovine cartilage-bone plates with 6 mm diameter osteochondral allografts, cartilage defects or stainless steel pins (positive controls) inserted centrally. Increased levels of surface damage with changes in geometry were not associated with significant increases in the coefficient of dynamic friction. Significant damage to the opposing cartilage surface was observed in the positive control groups. Cartilage damage, deformation and wear (as measured by change in geometry) in the xenograft (2.4 mm³) and cartilage defect (0.99 mm³) groups was low and not significantly different (p>0.05) compared to the negative control in either group. The study demonstrated the potential of osteochondral grafts to restore the congruent articular surface and biphasic tribology of the natural joint. An optical method has been developed to characterise cartilage wear, damage and deformation, that can be applied to the tribological assessment of osteochondral grafts in a whole natural knee joint simulation model

    Matrix-assisted laser desorption ionization hydrogen/deuterium exchange studies to probe peptide conformational changes

    Get PDF
    AbstractHydrogen/deuterium (H/D) exchange chemistry monitored by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry is used to study solution phase conformational changes of bradykinin, α-melanocyte stimulating hormone, and melittin as water is added to methanol-d4, acetonitrile, and isopropanol-d8 solutions. The results are interpreted in terms of a preference for the peptides to acquire more compact conformations in organic solvents as compared to the random conformations. Our interpretation is supported by circular dichroism spectra of the peptides in the same solvent systems and by previously published structural data for the peptides. These results demonstrate the utility of MALDI-TOF as a method to monitor the H/D exchange chemistry of peptides and investigations of solution-phase conformations of biomolecules

    On the interaction of vortices with mixing layers

    Get PDF
    We describe the perturbations introduced by two counter-rotating vortices - in a two-dimensional configuration - or by a vortex ring - in an axisymmetric configuration - to the mixing layer between two counterflowing gaseous fuel and air streams of the same density. The analysis is confined to the near stagnation point region, where the strain rate of the unperturbed velocity field, A0, is uniform. We restrict our attention to cases where the typical distance 2r0 between the vortices - or the characteristic vortex ring radius r0 - is large compared to both the thickness, δv, of the vorticity core and the thickness, δm∼(ν/A0)1/2, of the mixing layer. In addition, we consider that the ratio, Γ/ν, of the vortex circulation, Γ, to the kinematic viscosity, ν, is large compared to unity. Then, during the interaction time, A0,-1, the viscous and diffusion effects are confined to the thin vorticity core and the thin mixing layer, which, when seen with the scale r0, appears as a passive interface between the two counterflowing streams when they have the same density. In this case, the analysis provides a simple procedure to describe the displacement and distortion of the interface, as well as the time evolution of the strain rate imposed on the mixing layer, which are needed to calculate the inner structure of the reacting mixing layer as well as the conditions for diffusion flame extinction and edge-flame propagation along the mixing layer. Although in the reacting case variable density effects due to heat release play an important role inside the mixing layer, in this paper the analysis of the inner structure is carried out using the constant density model, which provides good qualitative understanding of the mixing layer response
    corecore