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We describe the perturbations introduced by two counter-rotating vortices—in a two-dimensional
configuration—or by a vortex ring—in an axisymmetric configuration—to the mixing layer between
two counterflowing gaseous fuel and air streams of the same density. The analysis is confined to the
near stagnation point region, where the strain rate of the unperturbed velocityAgield, uniform.

We restrict our attention to cases where the typical distangeb2tween the vortices—or the
characteristic vortex ring radiug—is large compared to both the thicknegs, of the vorticity

core and the thickness,,~ (v/A,)*?, of the mixing layer. In addition, we consider that the ratio,

I'/v, of the vortex circulation]’, to the kinematic viscosityy, is large compared to unity. Then,
during the interaction timeb,\gl, the viscous and diffusion effects are confined to the thin vorticity
core and the thin mixing layer, which, when seen with the scgleappears as a passive interface
between the two counterflowing streams when they have the same density. In this case, the analysis
provides a simple procedure to describe the displacement and distortion of the interface, as well as
the time evolution of the strain rate imposed on the mixing layer, which are needed to calculate the
inner structure of the reacting mixing layer as well as the conditions for diffusion flame extinction
and edge-flame propagation along the mixing layer. Although in the reacting case variable density
effects due to heat release play an important role inside the mixing layer, in this paper the analysis
of the inner structure is carried out using the constant density model, which provides good
qualitative understanding of the mixing layer response. 2@4 American Institute of Physics.
[DOI: 10.1063/1.1718956

I. INTRODUCTION development of flamelet models including transient effects
and, more recently, to the development of the so-called un-
The interaction of vortices with mixing layers is of great steady flamelet approach.
importance for the understanding of fundamental combustion  Recent theoretical, numerical, and experimental analyses
processes, such as turbulent combustion and combustigiave tried to quantify unsteady and curvature effects study-
instability. ing the response of a one-dimensional laminar flame to vari-
Often, the characteristic scales associated with the comgble strain rate!®1° and the interaction of vortices with
bustion processes are smaller than the smallest scales of thgmes(see the recent review article by Renatial? and
turbulence Then, combustion occurs in the form of laminar references therein
flames embedded in thin mixing layers that are locally dis-  Aspects of the interaction of single vortices with reacting
torted and strained by vortices of different scales. This ha#"nixing layers—or diffusion flames—have been studied ana-
led to the development of a variety of flamelet models. Thesqaytica"y by Marblel® Karagozian and Marbl¥, Baum
models consider a turbulent flame to be formed by an engt a|,'® Cetegen and Sirignartd,and Liran.?° Similar inves-
semble of laminar flamelets, which may be extinguished iftigations were carried out by Peters and Williathsyho
subject to a supercritical local strain. analyzed the roll-up of a premixed flame by a single vortex,
Most ﬂamelet mOdels assume that a turbulent diﬁusiorbnd by Karagozian and Manaéwho Studied the effect Of a
flame behaves locally as a steady, strained, one-dimensiongair of counter-rotating vortices on a diffusion flame. These
laminar flame>® This is the base of the so-called laminar gnalyses aimed to describe the flame structure, the global
flamelet assumption. However, steady strain models ignorgnhancement of the chemical reaction due to the vortex roll-
several features of turbulence-combustion interactions. gy, and the structure of the burned core.
particular, the unsteady response of combustion and transport The interaction of vortices with flames has also been
processes to the variations in the turbulent field—which may;gied in different configurations both numeric&iy?>and
induce extinction and reignition processes—and the effect ofyperimentally®=28 by several authors. In particular, the
curvature—which may alter the flame structure throughhead-on interaction of a vortex pair or vortex ring with a
transverse diffusion—are removed. These limitations, diSigminar flame is a very simple configuration that has re-
cussed in detail by Cuenot and Poinédiave led to the (gjyeq great attention in the last yeats®’ This kind of in-
teraction provides relevant information such as the time evo-
3Electronic mail: vera@tupi.dmt.upm.es lution of the flame front® the flame structure, as well as
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information on extinction limits, pocket formation, effects of denotes the propagation velocity of the stoichiometric pre-
vortex size and strength, etc. mixed flame.

The aim of this work is to contribute to the understand-  Under near-extinction conditions, the structure of the
ing of the response of mixing layeter diffusion flamesto  thin reaction layer, with characteristic response tifiéD
the perturbations by vortices, analyzing the simple configusmall compared withézm/DT~Xg1, is quasi-steady and
ration of the head-on interaction of laminar vortex pairs—orquasi-planar during the time of interaction of the vortex and
vortex rings—with counterflow strained mixing layers. The the mixing layer. The critical value ofs for extinction can
analysis will pe carried out, assu.ming constant de.ntc,ity, fokhen be taken to be equal to the extinction vajug of a
the cases of interest when the thicknesgsof the mixing  y1anar steady diffusion flame, which can be obtained experi-
layer andd, of the vorticity core of the vortices are small ona)1y or using numerical calculations based on a detailed
compared to the characteristic core to core distance or VOrtex . otic scheme. Nevertheless, unsteady effects play a key

fng radlgsro. L . role in determining the evolution of the outer mixing layer
In this case, three characteristic times arise in the prob- Co .
) N ) structure, and therefore gfs, which in turn determines the

lem, the baseline strain timé,; -, the turnover time of the

vortices,tT~r(2,/F, and the viscous time,,~r(2)/v, whereA, conditions for the local extinction of the flame. For this rea-

denotes thébaseling strain rate experienced by the unper- son,'our main coqcern in this paper \,Ni” be the descri'p"[ion of
turbed mixing layer and’ denotes the strength of the vorti- the tlme and §pat|al evolution gf during the vortex mixing
ces. Then, if the vortices are to maintain their identities durlayer m'Feractmn. , . o
ing the interaction, the viscous time must be large compared During the flame vortex interaction, local extinction of
to the other two time scale¢,>A;" and t,>t;, which the flame_ will occur as soon as the Fran_&ent scalar (jllssma—
leads naturally to the assumption that both Reynolds numtion rate imposed by the vortex, which is roughiy~ty
bers,Aor3/ v andI'/v, must be large compared to unity. Then, ~T'/r3, increases above a certain critical value. This can be
the ratio of the baseline strain time to the turnover time,achieved both by decreasing the vortex sizg, which, on
tT/A51~F/r3Ao~1, assumed to be of order unity, emergesthe other hand, reduces the Reynolds number of the flow, or,
here as the main parameter of the problem. In this case walternatively, by increasing the strength of the vortéx,
are allowed to neglect the viscous effects to obtain a simpl&hich increases the Reynolds number of the flow. Then, the
description of the flow field and the evolution of the vorticesmain advantage of considering vortices that are both “large
and of the distorted mixing layer. The results of this analysisand strong” is that one is able to decouple the diffusive pro-
will be used later to describe the internal structure of thecesses that occur at the vortex cadiffusion of vorticity)
mixing layer. from those that take place at the mixing layeiffusion of
One aspect of special relevance in this kind of interacspeciey, and that it is possible to use boundary-layer analy-
tion is the distortion of the mixing layer by the vortices, gjs.
which increases the flame surface area and enhances molecu- The analysis could also be used for the description of the
lar mixing. Here we shall analyze the effects of this distor-qynamics of triple flames, or of flame-edges, that form after
tion on the distribution in the mixing layer of the so-called {he |ocal extinction of diffusion flames. The local extinction
mlxture fractionZ, a conserved scalar.of l_Jmt cor_ncentranon of the flame leads to the formation of extinguished hdtes
in the fuel stream and zero concentration in the air stream. “&nnulus, where both reactants mix without reaction. These

the Burke_:—Schumann_Ilmn of |nf_|n|te_ reaction rates, the m'X'regions are separated from the diffusion flame by a flame-
ture fraction characterizes the diffusion flame structure when

e dge that can propagate in either direction—as an ignition or
the mass and thermal diffusivities are assumed to be equal, > . . .
. : extinction front—depending on the local flow conditions.
In this case, the flame sheet is located at the surface vithere o
. A . Thus, for values of the scalar dissipation rate smaller than a
takes its stoichiometric valugg, and the rate of fuel con-

sumption per unit flame surface is characterized by the valugntlc.aI Val?e’X5<XS'C3" t::ey p[)opaggte glong .thehStc;IChlo'f
|VZ| of the mixture fraction gradient at the stoichiometric metric surface towards the unburned mixture in the form o

surface. See, for example, the books of Willidmand ~ (FiPle flames(ignition fronts, while for s ci< xs<xs.they
Peters behave as extinction fronts that recede away from the un-

When the effective activation energy of the overall reac-Purmned mixture®4° The detailed analysis of the scalar dissi-
tion is large, diffusion flame extinction occurs, with small pation rate along the flame surface is therefore of interest for
changes from the Burke—Schumann flame structure, whet€ subsequent evolution of extinguished hdfes.

the thickness of the reaction |ayé‘:” is still small Compared The characteristic scales of the vortices and of the mix-
with the effective thicknessg,~|VZ|S?®, of the mixing ing layer are introduced in Sec. I, while the dynamics of the
layer. In fact, the local extinction of the flame occurs whenvortices and the flow field are described in Sec. Ill. The

the instantaneous valug,= DT|VZ|§ of the scalar dissipa- formulation of the inner structure of the mixing layer is
tion rate at the stoichiometric surface, which is the inverse ofjiven in Sec. IV and the numerical results are presented in
the characteristic diffusion timézm/DT, grows to values of Sec. V. The asymptotic description of the interaction in the
the order of the inverse of the residence tiBi¢/S? across  limits of large and small effective vortex strength is outlined
the preheated zone of the stoichiometric premixed flafne. in Secs. VI and VII. Finally, some conclusions are presented
Here D+ is the thermal diffusivity of the mixture an&, in Sec. VIILI.
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Il. CHARACTERISTIC SCALES IN THE INTERACTION £
OF VORTEX PAIRS/RINGS WITH MIXING LAYERS

A. Freely propagating vortex pairs /rings

Original Position
of the Mixing Layer

Vortex Path

In this section we discuss the characteristic scales for the

dynamics of vortex pairs, of circulatiohi and core to core r ?ﬁ(f?
distance 2., and of vortex rings, of circulatioh and radius
r., with a core thickness of siz&,<r.. z=0att= 0\
For vortex pairs the characteristic lengtlr is while the
characteristic velocity i¥,=I"/4ar .. This is the velocity of Air ~To r

displacement of the vortex pair when the Reynolds number

Re-=I"/v, which is roughly the ratio of the diffusion time Fuel

rglv to the turnover timer./V,, is large compared with

unity. Note that the propagation velocit§; of a vortex pair

does not depend on the size of the vorticity core, if this Size  Distorted Mixing Layer

Sy is small compared with,;. _ _ o _ N
FIG. 1. Schematic representation of the distortion by vortices of a mixing

These scales are also applicable for vortex rings, al;y > - . ; )
layer in the stagnation region between two gaseous counterflowing streams

though the velocity of self-propagation depends on the ratiQs fyel and air coming fromz— — o andz— oo, respectively. The different

8,1t in the form variables used in the description of the flow are clearly indicated.
v r | 8r, 1 n
= 0 —— — s
=2 |99, 2

as obtained by Lord Kelvftt for a circular core of uniform ing of the vortices through the original plane of the mixing

vorticity. layer. Here we are interested in cases where the Reynolds
As it is well known?? the streamlines in the reference number

frame moving with the vortex pair or ring demonstrate the (2A 1 5

existence of a bubble of fluid that is transported by the vor- Rey= 00 _ _(r_o) (4)

tices, which becomes doughnut shaped for vortex rings for v Pri omo

small values ofé, /r¢, such that is large compared with unity. In addition, we shall assume
V, 1 8r. 1 that the Prandtl number Pry/DT is of order unity, as typi-

T2 2m ( Iog?— 2 >1. (2)  cally occurs for'gaseous mixtures. _ _ _

¢ v The dynamics of the vortex pair or vortex ring will de-

If the fluid used in the generation of the vortices andpend on the nondimensional circulation of the vorticEs,
transported by them differs from the surrounding fluid, it is defined below in(8) and (22) for vortex pairs and vortex
bounded by a mixing layer with a thickness of orderrings, respectively, which is the ratio of the characteristic
(vIA7)Y?, where A;=V,/r~T/4xr2 is the characteristic self-induced strain due to the vortices, and the basic sfgin
value of the strain due to the vortices. Thus, if we want theof the unperturbed flow. For small values Bf the basic
vortices to maintain their identities’(A7) "2 must be small  strain will rapidly transport the vortices to the mixing layer

compared withr ., which is the case it /4mv>1. and increase, exponej]tially with time.
o ) _ For large values of the interaction between the vortices
B. Vortex pairs /rings subject to strain and the basic strain involves two main time scales, the char-

We shall now analyze the dynamics of the vortices wherRCteristic strain timeA, *, and the turnover time of the vor-
they move, under the conditions Rel/4mv=V,r./v>1  tices, 4rr§/T’, which is small, by a factoF !, compared to
and s, /r.<1, in the straining flow field associated with two A, * whenT>1.
counter-flowing irrotational streams of the same density, and
with a strain rateéAy. Our aim is to analyze the perturbations
of the mixing layer by the vortices in cases where the thick-
ness of the unperturbed mixing layet, = (D1/Ag)Y? is
small compared withi.

The motion of the vortices results from the superposition
of the velocity due to the strain and the sglf-induced velocity  ynder the assumptions stated above, in the following
V| . As a consequence, the core to core distance of the vort&%ctions we shall analyze the perturbations introduced by
pair, or the vortex ring radius, will grow with time at rates o counter-rotating  vortices—in a two-dimensional

dr, dr. A, configuration—or by a vortex ring—in an axisymmetric

Eonrc and T 5 e 3 configuration—on the mixing Iayer_ in the stagnation region

between two gaseous counter-flowing streams of fuel and air,
respectively. Then, in order to characterize the size of thas shown schematically in Fig. 1. Without loss of generality,
vortices, we shall use the valug of r at the time of cross- we consider that in the two-dimensional case the symmetry

lll. VORTEX DYNAMICS AND DISTORTION OF THE
MIXING LAYER
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plane of the vortex pair coincides with that of the basic 0.4
strain, and in the axisymmetric case the vortex ring is coaxial
with the basic flow.

When both streams have the same density, the unper-
turbed potential velocity field near the stagnation point is
given byv=—Ayz andu=Agr in the planar case, and by :
v=—Apz andu=Ayr/2 in the axisymmetric case. Here ~ gl...............f .. .. R
and z denote the radial and axial Cartesian coordinates tan- ‘
gential and transverse to the unperturbed mixing layer, re-
spectively, andu andv represent the corresponding velocity
components along theand z axes.

The perturbed mixing layer, whose thickne%s is infi-
nitely thin compared witlr in the limiting case]'/v>1 and
r§A0/v> 1, that we are analyzing, is seen as a passive inter-

Vortex Pair Vortex Ring

face between the two counter-flowing fluids when these have 05}

the same density. The variable density effects, due to the heat : . . ‘

release in the mixing layer, will be dependent on the outer '0'64 3 2 1 0 1 2 3 4
velocity and pressure fields generated by the dynamics of the r It

vortices, which is independent of the internal dynamics of ¢ 0

the mixing layer. FIG. 2. Trajectory of the vortex paifleft) and vortex ring(right) in the

Effectively, due to thermal expansion, the mixing layer (r.2) plane. The trajectory of the vortex ring is shown for different values of
can be viewed as a planar distribution of volume sources thato: 0" R&o=2 (dasheg| 8 (solid), and 80(dotted. Note that the transverse
induces transversal displacement velocities. These velocitiefzéze%"\‘l'v?titre Is normalized with, whereas the axial coordinate is normal-
generate an irrotational perturbation flow that has to be o
added to the outer irrotational flow due to the baseline strain
and the vortices. This perturbation flow could be able to
modify the vortex path if the displacement velocities were dre dz T
strong enough. However, this is not the case in the limiting gy =Aofer gy = ~AoZe™ Ty (6)
case considered here. Using order of magnitude estimates, it
is easy to see that the ratio of theiscous transversal \yhen these equations are integrated using as initial condi-
displacement velocitiesyn~ (vAr)"?=(»V,/r)*? to the  fions the values, andz, of the vortex position at=0, we
ch:racteristic velocity of the vortices/|=I'/4mrc, is of  qptain the nondimensional vortex core position
order

rolro=é=6", zJdro=n.—=—Ilre"" 7
v IV~ (VIV, T ) V2= (47 vIT) V2, (5) o/l0=6c=€"  Z/fo=nc=—Tre ", 0
which is shown in Fig. 2, written here in terms of the non-
large. Therefore, being consistent with the approximation O]d|men5|onal timer=Aot and the nondimensional C°°Td"

natesé=r/rq and n=2/r,. Here we have chosen as time

thin-cored vortices, which required the assumption " A )

I''A7v=>1, we may also neglect the effect of thermal expan-or!g!n th_e time of passage of the vortex pair through the
sion on the outer irrotational streams. original mterface_between the two streams.

The interaction between the vortices and the mixing Then, the ratio

layer is much more complex in the more general case of
counter-flowing streams with different densitf8$*which is

not treated here. In this case vorticity is generated at the _ .
interface by baroclinic effects, which affects strongly the dy-apPef’i“”glf'r.”;’ eq(;;al t? the ratldf‘,? [Ado 0]; thhe charac-
namics of the vortices and the interface distortion. This, inc'ouc Seli-induced ve ocityVip=1'/4mro, of the vortex

turn, modifies the local values of the strain rate, whose tim&ar to the radial VEIOC't)AOrO of t.he vort!ces, Is the main .
evolution ultimately determines the flame response. parameter that characterizes the interaction of the vortex pair

with the mixing layer.
If we measure the velocities with the scalgr,, the
instantaneous velocity fieldi=u/Agry, v=v/Agry, Iis
The velocity field associated with the vortex pair, of cir- given by
culationI” and core positiom(t) andz,(t), has to be added

which is clearly small when the Reynolds numi&dnv is

T=T/4mr2A,, (8)

A. The two-dimensional case

to the unperturbed straining field to obtain the instantaneous ~ _

o . . ~ = 7c
velocity field, thus allowing us to calculate the time evolu- u=¢-2I' > 5
tion of the vortex core position. (§=&)"+(n—nc)

The evolution ofr. and z, with time is obtained by —n
Cc

evaluatingu andv at the vortex corer(;,z.) leaving out the — 5 5
local self-induced velocity due to the vortex, (§+ &)+ (n—1nc)

: (9a)
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£ & dz I

(6= £0°+(n— 7 at A
£+ é

(£ £)2+ (7= 7?

The position at various times of the mixing layer, which
is infinitely thin in the limiting casel'/»>1 and AorS/v
>1, that we are analyzing, corresponds to the time evolutio
of the fluid surface which at—— is at #=0.

Thus, the centerplane valug,=z,/ro(<0) of this
mixing layer, which corresponds =0, is given from Eq.

8r¢
Iog——C). (15)

Due to the stretching associated with the growth of the

_ (9b) ~ vortexring radius, the sizé, of the vorticity core will also
change with time. If we neglect viscous diffusion, the vol-
ume of the vorticity core, proportional tocﬁ\z,, should re-
main constant, as is usually assumed in inviscid vortex rings
models (e.g., Miloh and Shlied® Miyazaki and Kambé®
Yyvand and MiloH).

On the other hand, when the diffusion tinde/v is of
the order of the strain timé, *, the distribution of vorticity
in the vortex core will eventually reach a steady state char-

(9b) by acterized by a radial balance between convection and diffu-
d7p 4’f§C sion, leading to a constant valu_e o_f the vortex core thickness
a4 - T o (10 of the order of the characteristic viscous lengthA) 2.

et (e 7m) In particular, if we measure the characteristic viscous
where ¢, and 7, are given by(7), complemented with the time of the vortex cores;/v with the characteristic strain
boundary conditiony,,=0 at 7— —. time A, ' we obtain the Reynolds number
The time evolution of the nondimensional strain rake, 20, [ 8,\2
=AJA,, at the lower point region of the mixing layer canbe =~ Re,=—— = r—v) Rey, (16)
0

calculated using9a) at 7= 7, and é¢<¢&;. This gives

~ ~ which can also be viewed as the square of the nondimen-

Nzgzl 8L (7= Mm)&c (11) sional vortex core thickness based on the viscous length
& [£2+ (pe— mm)?]? (vIAg)Y2. The time evolution of the vortex core size can

hich il be sh bel din ord lcul only be determined from a detailed analysis of the vorticity
which, as will be shown below, we need in order to calcu atedynamics within the core. This analysis, which is left to the

the timg evplution of thg mixing Iayer thickn'ess and the S,Ca'Appendix, gives
lar dissipation rate, which determines the time of extinction
of the diffusion flame. Re,=8+(Rg,—8)e 2 (17

where Rgy= 62,A,/v denotes the value of Rat r=0.
Thus, to characterize the vortex ring we shall use its
The formulation of the problem is more involved in the constant circulatiod” together with the values, and 8, of
case of the axisymmetric motion of a vortex ring in a coun-the vortex ring radiug, and the vortex core thickness,
terflow. The self-induced velocity, of a vortex ring de- when the vortex ring crosses, at tirhe 0, the unperturbed

B. The axisymmetric case

pends on the circulatior;, the radius of the vortexring.,  position of the dividing surface=0 of the mixing layer.
and the apparent sizé,, of the vortex core, which in addi- Then,r . andz. will be given by the solution 0f14) and
tion depends on the vorticity distribution, as discussed in15) with the boundary conditions.=r, and z,=0 at t
detail by Saffmarf? =0, and withd, given by(16) and(17) as a function of time.

For the self-induced velocity of a vortex ring we shall This yields
use the value

rlro=é.=e™ (18)
Vi=——[log2e_c 12 i
=T, og 3, , (120  that can be used to write
where the constar® depends on the shape of the vorticity d_77c: o r | Y T llog 8
distribution within the core. Here we shall use the vallie dr e 47”ng °t2 2 Re,
=0.558 corresponding to a Gaussian vorticity distribufion,
as discussed in detail in the Appendix. The vortex core size is 8 2
) +l1-=—1]e . (19
defined by Re,o
2m (= Here we have introduced the parameter
8= | pPelp.tdp (13)
Ve 1 8ro 1 8 R
in terms of the instantaneous value of the vorticitfp,t) at O Trr, 27 |095—VO_ Cl=5_-|log Re2 —-Cl
a distancep from the vortex centroid. Then the dynamics of 0 (20)

the vortex ring is given by _ _ _
or nondimensional form of the self-induced velocity, at

7=0, which determines the structure of the flow when the
vortex ring crosses the original plane of the mixing layer.

dr. Ag

at_2'e (14
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Equation(19) can be integrated with the boundary con- 2 \12
dition 5,=0 at7=0 to give kz(m (27)
Ne 1 1 Re\| _ ., In particular, the vertical evolutiom,,=z,/ry of the
T = |2% a7 log Reo/ |° mixing layer in the near-axis region, wheresr, is given

by the integration of
1 1 [Reg T Re, ~ 5
—— 4+ —|——1]| = — e " d r
+|2ay W+27T( g 1 2+|OgRa,0) e dnm:_nm_ & 29
T

[+ (= mm) 1%
o _ o where ¢ and 7. are given by(18) and(21), with the initial
where Rgis given by Eq(17) as a function of time in terms  condition 7,,=0 at 7o, which provides, together with Eq.

of its initial value Rgy at 7=0. Figure 2 shows the trajecto- (21), the evolution of the strain rate experienced by the mix-
ries of the vortex core in the plane,g) for different values  ing layer at the axis of symmetry

of ag and Rgy. ~ 5

In (21), the nondimensional vortex strength A A _ 1 3I'&c( 7 7m) _ 29

Ao [5(2:"'(77(:_ 77m)2]5/2

, _ o . IV. STRUCTURE OF THE MIXING LAYER
is the ratio of the characteristic turnover velocity of the vor-
tex, I'/2r,, to the baseline strain veloci#r, at a distance A Conservation equations and thermochemical
r, from the stagnation point. Alternatively, it can also be Model
viewed as the ratio of the characteristic strain induced by the |n the Burke—Schumann limit of infinitely fast chemistry
vortex ring,T'/2r§, to the basic straind,, or as the ratio of  the fuel and oxygen do not coexist. Their mass fractigps
the basic strain timeA, !, to the turnover time, &/T. Itis  and Yo, which satisfy the relatiorY- Yo =0, can be cal-
important to note that the above definition of the nondimen+yated, if we assume equal diffusivities of mass and heat

sional vortex circulationl” differs from that of the two- D in terms of the mixture fractio, which is defined by
dimensional case by a factor ofr2 SYe/Yro— Yo, /Yoot 1

(21)

T=T/2r2A, (22)

In the following, we shall restrict our attention to values
of ay smaller than unity, which corresponds to values of S+1

d,/r=1/117 for which the domain of fluid traveling with in terms of the mass fractions of fuel and oxygen at their
the vortices remains bubble shagédas is typically ob-  corresponding feeding streamés, andYo,0, and the air to

served in the experiments. o _ fuel mass stoichiometric rati®=soYro/ Yoo, Wheresg de-
To calculate the instantaneous velocity field at any pomtnotes the mass of oxvaen consumed ér unit mass of fuel
(r,2) other than €;,z.), we need to add to the unperturbed Y9 P '

velocity field, u=rAy/2 andv=—zA,, the velocity field " (e temperaturg, given by T=To+ yTo(1~Y¢/Yro

induced by the vortex ring. Then, the nondimensional veloc- Yo,/Yo,0). can also be obtained in terms of the mixture

ity field can be written &€ fraction,.whereTo is the temperature of the feeding streams,
~ and vy is the heat release parameter, defined by
£ T [ &\ p—n. =QqYro/[CpTo(1+S)] in terms of the heat releasgper unit
5~ =252 |77 |halw), (238 mass of fuel consumed, and the specific hgaat constant
2 wé\2& &
pressure, assumed here to be constant.

(30

u

5 T £\ ¢ If we assume, in addition, constant values for the gas
v=—7n+ L 2—§> gh(#«)"o(#)}, (23D densityp and the thermal diffusivityDy, the conservation
¢ ¢ equation for the mixture fractiod can be written as
wherely andl, can be expressed in terms léfand E, the
complete elliptic integrals of the first and the second kind, as Ty +u-VZ=D+{V?Z, (31
m de 2ln where the velocity fieldi=(u,v) is given by(9) in the two-
lo(p) = jo 1+p—cosf 2+ )1/2E(k)' (24 dimensional case and kg3) in the axisymmetric case. This
" equation is to be solved with the boundary conditi@ans0
T cos6de in the oxidizer stream and=1 in the fuel stream, and then
ly(p)= fo 1+ u—cosd the flame sheet is given §=Z.=1/(S+1).
2 1+ p B. Asymptotic solution for large Peclet numbers
- (2+M)1/2[TE(k)_ K(k)}’ (25) To describe the distribution of the mixture fraction in the

_ mixing layer when the Reynolds numbggr3/v is large, we
with define a system of orthogonal curvilinear coordinatgs
24 #2452 attached to it, as shown in Fig. 1. Heseand n denote the

(=7 "+ &+ & distances measured along and normal to the mixing layer

w= -1, (26) : _ ong g layer,

288 respectively, with the origin o located atr =0.
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In the coordinate system attached to the mixing layer, the&orresponding to a mixing layer subject to a constant unit

continuity equation takes the form strain, where the subscript indicates derivative, and
a(rlug)  a(riuy) a6s 6% )
s + on 0, (32 ot + st =2D1—2A6;, (38

where j=0 in the two-dimensional case arjé&=1 in the obtained equating the bracketed term in E3f) to D1/82
axisymmetric case, and and u,, denote the local velocity and multiplying the resulting equation bys2.
components along theandn axis. The solution of (37) with the boundary conditions

‘Since the density is assumed to be constant, the terMg(°) =Zo(—)—1=0is
a(rlug)/ s takes a constant value across the mixing layer.

Then, Eq(32) can be integrated with the boundary condition ~ 20(7) = (Derfol 7/12), (39)
u,=0 atn=0 to give a mixture fraction whose dependence ®andt is through

Uy=—nNA(S,t) 33) the local valued(s,t) of the thickness of the mixing layer,

o given by Eq.(38). This equation can be solved féf, with
where the method of characteristics using the initial conditiéf
. = 6,2n0:DT/A0 at t— —o provided by the solution of the
1 a(rlug)

A(st)=— (34) unper'Furbed proplem. o
rlds With Zy(#) given by Eq.(39), the flame surface lies, in
first approximation, aty= ns, where Zo=2,~=1/(S+1),
given implicitly by Zy=(%)erfc(zs/+/2). The nondimen-
sional mixture fraction gradient &y=Zy is

is the local strain rate imposed by the flow on the mixing
layer, to be discussed in Sec. V below, and E1) can be

written as
S)=|Zy,|s=(2m) Y2exp — 72/2), 40
YAV 9z 9z K(S)=[Zo,|s=(2m) A= 75/2) (40)
E—’_USE_nA%:DTW' (35  avalue that depends only &and, therefore, does not vary

along the flame surface. This value can be used to calculate

The solution of this equation must be symmetric, and anathe valuey.=D+|VZ|? of the scalar dissipation rate at the
lytic, at s=0, and satisfy the boundary conditiods=0 as stoichiometric surface, given in nondimensional form by
n—oo andZ=1 asn— —oo, _ 2

It should be noted that in E435) we have dropped out Xs/Xs0= O/ O (41)
the effects of curvature, which are of orderglyé< 1. Here  where xso=Aqk(S) is the scalar dissipation rate at the un-
Pe=A,r2/Dt denotes the Peclet number of the unperturbedperturbed flame.
flow, which is large whemqr3/v is large since the Prandtl The analysis provides also the mass of fuel burned per
number P& v/D+ is of order unity for gases. Similarly, we unit surface per unit timeyy, proportional toVZ|s, which
have neglected the longitudinal diffusion term, of ordercan be written in nondimensional form as
Pe !, Which is even smaller than the curvature terms. M/ M= Srp/ Srns 42

According to this, when the characteristic size of the
vortex pair or ring is large compared with the mixing layer Wheremg = pYgo(D1Ag)Y4(1+S 1) k() is the correspond-
thickness, the effects of the curvature are negligible and, ifhg fuel consumption rate at the unperturbed flame.
first approximation, the mixing layer behaves as quasi-
planar. This is in agreement with the experimental results of
Santorc®® corresponding to fuels with unity Lewis number, V. NUMERICAL RESULTS
which show that the scalar dissipation rate at extinction is i ) ) o o
independent of the radius of the vortex in the case of vortex 10 describe the distortion of the mixing layer it is con-
rings large compared to the original thickness of the mixing/€nient to introduce the Lagrangian paramatemd param-
layer. etrize  the perturbed mixing layer asx(\;t)

It is easy to check that the solution (f5) has the self- = (T(A;1),z(A;1)). Then, the local strain rate experienced by
similar form Z(n,s,t)=Zo(7), where n=n/d,(s,t) is a the mixing layer, given bA=—n-S-n, can be expressed in
similarity variablé“° defined by measuring the distance nor- "ondimensional form as

mal to the mixing layer with the local valué,(s,t) of the A T+ O.+7 2
mixing layer thickness, to be given by E@8) below. Writ- A= —= et ”2 vg)2§>\ m Ung)‘, (43
ten in terms of the new variable&5) takes the form Ao &ty
dz.11 (a5 95 D- d27 wheren denotes the unit normal vector adidthe velocity
— = _(_m+ us—m) }: _2T o (36)  gradient tensor, and the subscrigts;, and\ identify partial
dy [0\ ot ds Sm dn? derivatives.

This expression involves the velocity gradients with re-
spect to¢ and 7, as well as the derivatives of the coordinates
& and n with respect to the Lagrangian parameter. The
120, +Z0y,=0, (37)  former can be obtained analytically, in the two-dimensional

This equation is satisfied i,(s,t) andZy(#) are cho-
sen so as to verify the equatidfis
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FIG. 3. Position at various times of the two-dimensional mixing layer for different valuBs Bhe planez= 0 (dotted line$ has been displaced downwards
to avoid superposition of the plots. The vortex cores are representedtbgign.

case, or numerically, in the axisymmetric case, while theA. Two-dimensional case

latter must be obtained by numerical integration of the prob- Figure 3 shows the location of the two-dimensional mix-

lem ing layer at various times for different values Bf The dis-
~ placement of the mixing layer below its original plane, when
§ u measured withty, remains small at all times for small values
daln{_J v (agy ~ of I'. This displacement grows linearly with, and the in-
dr | & Eéfﬁfn’?x ' terface becomes strongly wrapped around the vortices when
7\ vVen Uy T is moderately large compared with unity.

The structure of the mixing layer at various times is
Whered/dr denotes material derivative, with the initial con- shown in Fig. %a) in the case1~“=10, showing the mixing
ditions £=f(\), =0, §,='(A), and =0 at—7==70  |ayer thickness in arbitrary units as well as the position of the
>min(T"*,1). In this case a natural choice for the param-joca| maxima and minima of the strain and scalar dissipation
etrization is to take(\) =€*, which defines the Lagrangian yates It should be noted that while the peak scalar dissipation
parametei as the natural logarithm of the radial coordinate (4t is found at the center plane during the initial stages of
at7=1o. the interaction, it finally shifts to a radius of order, with

This procedure yields the position of the mixing layer heay values slightly higher than those encountered along the
and the local strain rate experienced by it as a function OEenter plane.

time, what allows us to integrate the nondimensional form of A< qiscussed by Marbi¥ during the roll-up process ob-

Eq. (38), namely served in Figs. 3-5, the adjacent flame sheets begin to inter-
act as soon as the mixing layer thickness becomes of the
order of the spacing between the flame surfaces. As the sub-
sequent diffusion between adjacent flame elements depletes
the concentration of reactants, the reactant consumption rate
subject to the initial condition’?>=1 as7——«. From this  decreases, reducing the risk of local extinction, until the two
we may calculate the evolution of the mixing layer thicknessflame sheets eventually annihilate each other. This leads to
and, using Eqs(41) and(42), the values of the scalar dissi- the formation of pockets of unburned reactants surrounded
pation rate and the fuel consumption rate, respectively. by diffusion flames? which increases the effective flame
The numerical results, presented in Figs. 3—5, to be disarea and enhances the overall combustion profess.
cussed below, were obtained using an adaptive Cash2Karp ~ As can be seen, previous to this roll-up process the mix-
Runge—Kutta method with variable step size, based on ening layer is strongly deformed in the rear part of the vortices,
bedded Runge—Kutta formulas of fourth and fifth order, aseventually developing a sharp bend, where, obviously, the
outlined by Presst al>? (p. 708. The number of points used assumption of negligible curvature leading to E3f) ceases
in the description of the mixing layer ranged from 1000 toto be valid. It should be noted, however, that in this region
4000, and the tolerance of the results was maintained at fouthe mixture fraction gradients are expected to decrease, as
digit accuracy. discussed above, thus reducing the possibility of extinction

52

FZZ_ZMZ' (45)
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r/r r/r r/r r/r0

FIG. 4. Position at various times of the axisymmetric mixing layerdgr 0.5, Rgy= 8, and different values & . The planez=0 (dotted lineg has been
displaced downwards to avoid superposition of the plots. The vortex cores are representédsigna

in agreement with the experimental observati¢sse, for  compared witir, whenT is small. In this case the perturba-

example, Ref. 30 Nevertheless, the local failure of our tions are much more important in the vicinity of the vortices,

analysis in this region does not invalidate its applicability to s . .
. ~where the scalar dissipation reaches its maximum value, than
the forward part of the bubble, where all the assumptions

made are still valid. In fact, due to the increased values of thd’ the symmetry plane.
local strain rate the mixing layer becomes even thinner irl3
this region, thus allowing us to neglect curvature effects with
more reason. This is in agreement with most of the previous In the axisymmetric case the solution depends also on
theoretical, numerical, and experimental work, which showshe effective valued, of the vortex core size through the
that the critical conditions for local flame extinction occur in self-induced propagation velocity of the vortex ring. As pre-
the region ahead of the vorticéalthough not necessarily at yioysly discussed, the time evolution of the vortex core size
the forward stagnation poiptwhere the analysis presented ig given by the detailed analysis of the vorticity core dynam-
here is valid. ics presented in the Appendix. This analysis shows that the

Figures §a)-6(c) show the time evolution of the peak vortex core size5, = (Re, v/A0)1/2 tends for large times to a

;calar dissipation rate along thg mixing layer tqgether W'thconstant value determined by the radial competition between
its center plane value as a function of time for different val-

~ . . convection and diffusion, which corresponds tqR8. Here
ues ofI'. In fact, in order to use the same scale in all the

. . . . Reg, represents the Reynolds number n the vortex cor
plots, which makes the comparison of results easier, the fi —.e" epresents the Reynolds number based on the vortex core

ures show the inverse of the scalar dissipation rate, propoFﬁIze 5‘t’_’ the chiracterlstlc strain velocitod, , and the ki-
tional to the square of the mixing layer thickness. As can benemla IChVIf(f:O”SI W hall that the d . fth
seen, except for small values Bfthe absolute maximum of n what follows we shail assume that the dynamics ot the

the scalar dissipation rate is only slightly higliabout a 4% vortex core is such that the vortex core size is constant,

than its maximum value at the center plane. Thus, we maj/hich corresponds to the case ReRe,o=8. It should be

conclude that in the two-dimensional case the center plangoted that the assumption tha is constant is not critical,
solution could be used to predict the conditions for localSince as shown by Ed12) the influence ofé, on the self-

flame extinction accurately. Note also the delay and attenudfduced propagation velocity is logarithmic, and therefore
tion of the scalar dissipation rate with respect to the imposeéhe variations ofs, will have very little effect on the inter-
strain due to unsteady effects. action process. This is especially true 6&1, when the
The perturbations induced by the vortices extend to distime scale of the interaction is much shorter than the charac-
tances of ordeF'*?r, from the vortex core, which are small teristic strain time, and the vortex core size, whose variations

. Axisymmetric case
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(a) Two-dimensional {b) Axisymmetric: o = 0.5 results presented herein are limited to values of the Reynolds
T T ' ' ' ' ' numberA, 82/ v, based on the vortex core siz,, and the
self induced strainA,, experienced by the core, below a
certain critical valugabout 60; see Refs. 54 and 55 for de-
tails). Using the expression for the self-induced strain given
by Saffman® [Eq. (4.2)], this leads to the approximate sta-
bility criterion

4 60
3 Rey(ap—C')

I's (46)
where C' =(3—C)/27 is a constant equal to 0.186 for a
uniform vorticity distribution and 0.137 for a Gaussian vor-
ticity core. It is easy to check that all the results presented in
Figs. 4—6 verify this condition.

It should be pointed out that the stability criteriéf6)
does not include the effect of the azimuthal stretching expe-
rienced by the core due to the growth of the vortex ring
radius. This is believed to act as a stabilizing effect, so that
the range of applicability of our analysis predicted by Eq.
FIG. 5. Structure at various times of the two-dimensional and axisymmetrid46) should be viewed as conservative.
mixing layers corresponding t6=10, ¢(=0.5, and Rg =8, showing the

thickness of the mixing layer in arbitrary units and the local maxima/minimacl Summary of results
of the strain rate(scalar dissipation rateas hollow/solid circles(solid/

hollow triangleg. The location of the maximum scalar dissipation rate at Figure 7 summarizes the results in terms of the maxi-
each time is in_dicated by an “e” denoting_ extinction pgint. The plane mum scalar dissipation rate experienced by the flame
=0 has been displaced downwards to avoid superposition of the plots. . . .

throughout the interaction. As can be seen, in the planar case

the maximum scalar dissipation rate is well predicted by the

centerplane solution for values of of order unity or large
occur in times of ordeA, *, can be taken as constant during compared to unity. On the other hand, in the axisymmetric
the interaction. case the maximum scalar dissipation rate is substantially

Figure 4 shows the location of the axisymmetric mixing higher than that found at the axis, a difference that increases

layer at various times foto= 0.5 and different values df. with aq. The picture also shows the asymptotic behavior for
As can be seen, the effect of the nondimensional vortexarge and small values df obtained in the following sec-
strength is similar to that of the two-dimensional case. Theions, which is in very good agreement with the numerical
structure of the mixing layer at various times is shown inresults.

Fig. 5(b) in the casex,=0.5 andl'=10. _VI. THE INTERACTION OF MIXING LAYERS WITH
Figures 6e)—6(i) show the peak value of the scalar dis- STRONG VORTICES (1:>1)

sipation rate as a function of time along with its value at the _ _ o
symmetry axis foray=0.5, ay=0.7, and different values of The distortion of counterflow mixing layers by strong

T. In this case, as the interaction proceeds the peak scal4P'€X pairs or vortex rings involves three different stages
dissipation rate shifts from the axis to an annular region at glue to the great disparity of _the .tlme scales |nvol\_/ed in the
distance of order, away from the axis, where the peak Problem whenl™1, as seen in Figs.(6), 6(f), and &i).
scalar dissipation rate reaches its absolute maximum. How- During the first stage, with a time scale of the order of
ever, this maximum value is now appreciably larger than thdhe vortex turn over timel'*Ay*, the vortices cross the
maximum scalar dissipation rate at the symmetry axis. As &riginal plane of the mixing layer, which is strongly distorted
consequence, we may conclude that in the axisymmetric cag#d eventually becomes wrapped around the bubble of fluid
the analysis of the near-axis region could fail to predict thethat is transported by the vortices. During this stage, the
conditions for local flame extinction. strain rate A, and the scalar dissipation rapg,, rise to peak

In particular, while sufficiently strong vortices could be values of ordel’Aq, although the scalar dissipation presents
able to extinguish the flame at the axis, weaker vorticesn attenuation and a delay of ordé*rlAal due to unsteady
could not be able to extinguish the flame there but would stilleffects, which in the case of the vortex ring depends on
be able to extinguish it in the annular region where the pealé,,/r,. As can be seen, this is the most critical stage for
value of the scalar dissipation rate is reached. This may corlecal flame extinction.
tribute to explaining the unexpected annular quenching re- In a second stage, with a characteristic time scale of the
gime observed by Kattat al® for moderately strong vorti- order of the strain time,A(}l, the stagnation point values of
ces, which contrasts with the usual quenching at the axis ahe strain and scalar dissipation rates decrease to their origi-
symmetry observed for stronger vortices. nal, unperturbed values. During this stage the mixing layer

As a final remark, it should be noted that due to thebecomes strongly wrapped around the vortices, while the
instability of the vortex ring to azimuthal bending waves, thecore to core distance, or vortex ring radius, grows due to the
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r=10

st/Xs.max

FIG. 6. Maximum value of the scalar dissipation rételid lineg and value of the scalar dissipation rate at the center plane/symmetrgdasised linesas
a function of time for different values df along with their corresponding quasi-steady values, the maximum straifdmatdashed linésand the strain rate
at the center plane/symmetry axéotted lineg: (a)—(c) two-dimensional caség)—(f) axisymmetric case fo,= 0.5, Rgo=8; (g)—(i) axisymmetric case for
ay=0.7, Rgy=28. The asymptotic value for large times is indicated by a horizontal dashed line.

basic strain. This reduces the self-induced velocity of theces. A detailed analysis of this stage, which differently from
vortices, which are eventually convected back to the stagnahe first and second stages is present for all valud iill
tion plane after reaching distances of ordér,~1I" below  pe given in Sec. VII.
the original plane of the mixing layer.

For 1 the core to core distance, or vortex ring radius,a. Analysis of the first stage of the interaction
becomes exponentially large. Then, in a reference frame . _ . _ . .
moving with the vortex the velocity field becomes stationary, ~ During the first stage of the interaction the basic strain
and the mixing layer adopts the form of the dividing stream-has a negligible effect on the distortion of the mixing layer
lines emerging from local stagnation points, near the vorti{compared to the effect of the unsteady strain induced by the
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(a) Two—dimensional ;.| (b) Axisymmetric: o) = 0.5

0 1

0 1 -1

10 10 10 B
F r

107" 10 10

FIG. 7. Maximum scalar dissipation rate experienced along the mixing (apéd lineg and maximum scalar dissipation rate at the center plane/symmetry

axis (dashed lingsas a function of": (a) two-dimensional caséb), (c) axisymmetric case for Rg=8 corresponding respectively tg,=0.5 and 0.7. The
leading-order asymptotic predictions determined in Secs. VI A and VIl are also indighittdd line.

—13203+ lill}(f}g-f— 0;7)—02{)‘

& (47)

vorticeg and the problem reduces in first approximation to R
the distortion of a fluid surface by a vortex pair, or vortex A=At.= —
ring, impinging normal to it. us+v

In a reference frame moving with the vortices the flow . )
field is steady and, as can be seen in Fig. 8, the initially flat 1hen, the integration of the problem
mixing layer becomes wrapped around the vortices in a time

of the order of the vortex turnover timeg,=2r3/T, even- dlé u
tually adopting the form of the dividing streamline. This al- a1 = v (48
lows us to evaluate the nondimensional strain rate at the 52 2—-2A8°

forward stagnation point\g=Agt., and from it the nondi- o L

mensional thickness of the mixing layer thereis, with the initial conditionsé=£,<1, 7=, and 2= 62 at

= 5r2n s{DTtC:A;tl' 7=0 provides the evolution of the mixing layer thickness
Here we shall usézgzr/rol 7=n—1n.=(2—2)Iry, along the dividing streamline, which yields the maximum

F=tlt, 0= u/(T /27t ) o=vl(T/2mry) and &  Scalar dissipation rate at the flame surface

= 5,/ (D1t)Y? as dimensionless variables, with the nondi- %2 oy

mensional strain rate given by Xs0/ Xs,max= (8m,min/ Omo) “= OminBL ™7, (49)

rlr
[+]

rir
[+

FIG. 8. (@—(c) Distortion at various nondimensional times-t/(27r2/T") of an initially flat fluid surfacesolid line9 by freely propagating vortex pairs and
vortex rings impinging normal to ita) vortex pair;(b), (c) vortex ring, corresponding t®) ay= 0.5 and(c) o= 0.7. The local maximé&minima) of the strain

rate are indicated by hollosolid) circles.(d)—(f) Structure of the mixing layer that develops between the fluid traveling with the vortices and the ambient
fluid: (d) vortex pair;(e), (f) vortex ring, corresponding t®) ay=0.5 and(f) @=0.7. The points of maximum straiimollow circleg and minimum mixing

layer thicknesgsolid triangleg are clearly indicated. The mixing layer thickness is plotted using the same scale in all the plots.
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whereB = 3 in the planar case arll= 7 in the axysimmetric
case.

1. Two-dimensional case

In the two-dimensional casejy=—3Y2 5%=4/3"2
=2.31, and the velocity field is given by

~ U U
T v GroE 0
. i1 E+1 1 51

G124 G+ 2
The structure of the mixing layer obtained from the in-
tegration of(48) with the above velocity field is shown in
Fig. 8(d). The maximum scalar dissipation rate is reached at
two symmetric points at each side of the bubble, where
5r2mn~2 22. However, the scalar dissipation rate is approxi-

mately constant in the forward part of the bubble, its maxi-FIG: 9 &% (solid), AL, (dashed &
(solid-circleg as a function ofg.

mum value being only a 4% larger than its value at the for-
ward stagnation point. This confirms that in the planar case
the analysis of the centerplane solution is enough to deter-
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= A" (dot-dashe] and 5,2/Aax

mine the conditions for local flame extinction.
The thickening of the mixing layer in the vicinity of the

nondimensional vortex strength. The resulting analysis, valid
for large values ofeﬁ gives the evolution of the maximum

rear stagnation point is associated with the negative straigcalar dissipation rate through E¢9) with T substituted by

imposed by the flow in that region.

2. Axisymmetric case

In the axisymmetric caséq= —ag *Y(1—aZd)¥2 &2
=[3mag¥(1— 2?21, and the velocity field can be writ-
ten as

0=—(28) ¥y (), (52

=—(28) ()~ Elo() ]+ Tag, (53

wherel, and I, are given by(24) and (25 with ,u=(%2

+ 7%+ 1)/26— 1. The mixing layer structure obtained from
the integration 0f48) with the above velocity field is shown
in Figs. 8e) and 8f), corresponding toxy=0.5 and «
=0.7, respectively.

The minimum m|xmg layer thlcknesﬁmm, along with
its quasi-steady vaIueAmaw and the mlxmg layer thickness
at the forward stagnation pom(ﬁSt ASt , are shown in Fig.

9 as functions ofyg.

As can be seenﬁmm decreases monotonically witl,
whereasd? reaches a minimum foro= (22 when the

1—‘eﬂ

VII. THE INTERACTION OF MIXING LAYERS WITH
VORTICES WHEN T'oy=17(r./ro)2<1

_ When the effective nondimensional vortex strentjth
=I/(rc/ro)?~(l,/r)? is small, the perturbations induced in
the vicinity of the vortex core by the second vortex—or by
the rest of the vortex ring—are negligible, and in first ap-
proximation the problem reduces to the interaction of a
single vortex with a counterflow mixing layer. In this case,
the characteristic scalg of the asymptotic structure of the
flow is defined by equating the velocily/2«l, induced by
the vortex to that due to the strafyl,, which required ,
=(T12mAg) Y2

In the reference frame whose origin moves with the vor-
tex core, the flow field, shown in Fig. 10, becomes stationary,
and as the interaction proceeds the mixing layer eventually
adopts the form of the dividing streamlines that emerge from
the stagnation pointst(Xg,Ys). This again allows us to
evaluate the nondimensional strain rate at the stagnation

strain rate at the forward stagnatlon point reaches its maxipoints ASt Ast/Ag, and from it the nond|men3|onal thick-

mum. Note also that the ratié,2/An. Of the nondimen-

ness of the mixing layer there&ﬁt S{5m0 Xso! Xsst

sional scalar dissipation rate to its quasi-steady value de=ASt .

creases almost linearly from 0.96 far,=0.4 to 0.86 for
ap=1 due to unsteady effects.

B. Analysis of the second stage of the interaction

The previous analysis can be extended to describe the _ A 32y +up(v +u, )~ U2 Uy
structure of the mixing layer during the second stage of the A=-——

interaction by substituting, by r. as characteristic length
scale andl by I'yy=I'/(r./ro)? as effective(time-varying

Here we shall usa&=(r—ro)/l,, y=(z—2zg)/l,, u=(u
—dr/dt)/Agl,, v=_(v—dz/dt)/Agl 5, and 7= Ayt as non-
dimensional variables, with the nondimensional strain rate
given by

54
Ao U2+ p? (4

Then, the integration of the problem
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T 7 77 T B. Axisymmetric case
(a) PRV ] . (b) ‘ - - . - - .
1 A N = In the axisymmetric case, the asymptotic velocity field in
e [ ——— . . -
_ P SR - the reference frame moving with the vortex core is
- P t - ] ’
-~ s o, P ]
",‘00 ::I, IR R o T —y I y+—x -t (57)
N - g . s o7 — A y - — y = =,
= = St /A : : : : it A ’ s 2 X2+y2 X2-|'y2 2
_1 \\\\\ 77 V) 7 7 X ) B
N R I ¢ ’ s where{ represents the local azimutal coordinate andhe
> 1 — (’) L=t ’1’ £ ‘_1 6 1’ £ corresponding velocity component, measured withand
(=1 ) /1 (=) /1 Aol 4, respectively.
T ¢ a The above velocity field corresponds to the superposi-

FIG. 10. Asymptotic structure of the flow in the vicinity of the vortex core T“On of a thre?'d'mens'onal stagnation point flow, with veloc-
for Toy=T/(r /1 4)?<1, showing the dividing streamlines that emerge from lty_gradlents—? along thex and_g axes and—1 along they
the stagnation point&t) and the asymptotic position of the mixing layer for axis, and a line vortex of unit strength located along ¢he

large times(thick solid lineg: (a) two-dimensional caseb) axisymmetric  gxjs. In the axisymmetric case the azimuthal strain associated
case. The points of maximum strahollow circleg and maximum scalarith the growing radius of the vortex ring induces an aver-
dissipation ratesolid triangle$ are clearly indicated.

age negative radial velocity towards the core. As shown in
Fig. 10b), this forces the streamlines to spiral into the origin,
resulting in a continuous ingestion of fluid towards the core.

X u This is in contrast to the closed streamlines obtained in the
i _ " two-dimensional case shown in Fig. (a0
a1 o (55 i - — 3ldn—1/2
7| s2 2_2AS2 At the stagnation points, whereg=2 3712y

=2%43712 e haved,’=A4=1.69. In this case the inte-

with the initial condition52:6§t imposed close to the stag- gration of (55) with the velocity field given in(57) gives
nation points, provides the spatial evolution of the scalarys max/Xso= 6..2=2.54. This value is surprisingly close to the
dissipation rate along the dividing streamline. two-dimensional value and is also plotted in Fig. 6.

Notice that whenI'<1 the effective nondimensional
vortgx strengthl“effzr./(rclro)2 is aIready.s.maII when the /1 cONCLUSIONS
vortices cross the original plane of the mixing layer, so that
the previous analysis will hold during all the interaction. On A constant density model has been presented for the low
the other hand, fol'=1 one should wait times of order Mach number interaction of vortex pairs and vortex rings
Agllogf after the beginning of the interaction to reach with counterflow re_ac_ting _mixing layers in_the Iimiting case
small values Oﬁ:eff- In this case the previous analysis will when the characteristic th|9kr)es§ of the mixing layer |s.sm.all
only hold at times such that the radius of the vortex is |argecompared to the characteristic size of the vortices. This sim-

= lified approach presents many advantages, like introducing
compared ta oI'V2. pimed . o y
P 0 analytical solutions for the velocity field. This leads to ana-
A. Two-dimensional case lytic developments that reduce the problem to solve a system

of ordinary differential equations. In particular, the structure

In the two-dimensional case, the asymptotic velocityof the mixing layer is investigated using the classical mixture

field in the reference frame moving with the vortex core is fraction variableZ and neglecting curvature effects. This per-

mits us to find a self-similar solution, which allows us to

T x— y T _y4 X (56) identify some of the key physical mechanisms involved in
x2+y?' x2+y?' flame—vortex interactions.

For large values of the nondimensional vortex strength
corresponding to the superposition of a two-dimensionathe interaction can be split in three different stages, which
stagnation flow with velocity gradients 1 ardl along thex  can be described asymptotically in good agreement with the
andy axis, and a point vortex of unit strength located at thenumerical results. The first stage determines the conditions
origin. In this case, the strain rate at the stagnation pointsfor local flame extinction, the second stage determines the
Xs=Ys=2" Y2 is given by6§2=Ast= 2. conditions for pocket formation and triple flame propagation,

When measured with its unperturbed value, the maxi-and the third stage reduces to the interaction of a single vor-
mum scalar dissipation rate obtained by integratbf® with  tex with a strained mixing layer.
the above velocity field iSys max/ Xso= 5,;5,:2.57, a value In the planar case the scalar dissipation rate is almost
that does not depend on the strength of the vortices. Thisonstant and very close to its maximum value up to distances
explains the apparently paradoxical result, observed in Figof orderr. from the center plane. The center plane solution
6, that the peak scalar dissipation rate tends to a constanan then be used to predict the conditions of local flame
value for large times regardless of the strength of the vortiextinction. On the other hand, in the axisymmetric case the
ces. maximum scalar dissipation rate turns out to be much higher

The location of the points of maximum strain and of than its value at the symmetry axis, and a detailed analysis of
maximum scalar dissipation rate is also shown in Fig. 10. the dynamics of the whole mixing layer is needed. In this
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case the maximum scalar disipation rate is reached in aAdjunct Professor. It has also been supported by the Spanish
annular region at radial distances of orderaway from the  MCYT under Project No. C02013002. M.V. would also like
origin, leading in some cases to the existence of an annuldo thank F. Higuera for helpful comments.
extinction regime similar to that observed by Kagtzal *°

For small values of the nondimensional vortex strengthAPPENDIX: THE SELF-INDUCED VELOCITY OF A
the interaction takes place as if the vortices were isolatedyORTEX RING SUBJECT TO STRAIN
and the analysis reduces again to the interaction of a single

. : o In this appendix we analyze the vorticity distribution of
vortex with a strained mixing layer.

o a vortex ring of circulationl” subject to a coaxial, axisym-
It is important to note that, as can be demonstrated b g ) Y

imple ki tical ts. th it ted h etric strain with axial and radial velocity gradientsAg
simple kinematical arguments, the results presente ereg’hdAO/Z’ respectively.

remain valid even when the symmetry axis of the vortices It is well known that the dynamics of a vortex ring of
does not coincide with that of the basic flow, as long as bOtr}adiusrc and circulationl” depends on the characteristic size

axes are parallel and the vortices propagate normal to th&, of the vorticity core*? Since the circulation of the strained

unperturbed mixing layer. In this case we only need tovortex ring is constant and the vortex ring radius is com-

fr? ooseta reference fr?tmhe Wlthtorlg]intr?t thetm|dpomttbetv;eegletely determined by the underlying strain, we only need to
€ voriex cores, orat the center ot the VOrtex fing, 10 redUCk |y late the time evolution of the vortex core thicknégto

the _[:I)_Loblem o ”:.at a:;}a?z;d Zere._t . tant th h (%ompletely determine the dynamics of the vortex ring.
€ assumption that the density IS constant throughou Thus, let us define the vortex core size as

the mixing layer, which allowed us to write E(B6), can be

relaxed without difficulty in the near-axis region, where a 52—2—7Tfmr3 0d

similarity transformation can be used to simplify the govern- VT Jo w(p,t)dr.

ing equations to a set of one-dimensional equations even if ) o .

density changes are fully taken into account. This more reall en. the ratio of the characteristic viscous tindgl», to the

istic case presents overshoots in the tangential velacity characteristic strain time, -, defines the Reynolds number

due to the stronger accelerations suffered by the hot combu8f the vortex core

tion gases in the mixing layer, which in turn modify the 5§A0

velocity componenti,, normal to the mixing layer, that will Re,= , (A2)

no longer be given by Eq33). Then, the strain rata varies v

across the mixing layer so that E@5) no longer applies to which can also be viewed as the square of the nondimen-

yield a closed form description &. Far from the axis the sional vortex core size based on the characteristic viscous

problem does not admit any simplifications and the solutiorlength (v/AO)l’Z.

has to be obtained numerically. For small Reynolds numbers the dynamics of the vortex
Despite the apparent simplicity of the analysis, it has leccore will be dominated by viscosity, while for large Reynolds

to results that are in qualitative agreement with the experinumbers it will be essentially inviscid. However, in both

mental results of Santoret al®>~3° In particular, Santord  cases the size of the vortex core will tend to a constant value

claims that, during the interaction of the diffusion flame with of the order of ¢/A,) Y2 as a result of the radial competition

a strong vortex, the constant density model reproduces qualbetween convection and diffusion.

tatively well the experimental evolution of the strain rate, In what follows, we consider a reference framey( )

and the scalar dissipation rajg,, at the axis of symmetry as moving with the vortex core, wherseandy are the radial and

long asA and  are nondimensionalized with their baseline axial coordinates, angirepresents the local azimutal coordi-

strain values. This is in agreement with recent numericahate. As discussed in Sec. VIIB, in this reference frame the

simulations carried out in our group concerning the effects oisymptotic velocity field at small distances from the vortex

dilatation on the structure of unsteady mixing layers. core corresponds, in first approximation, to the superposition
The analysis has also contributed to the understanding aff a three-dimensional stagnation point flow with velocity

previously unclear phenomena, such as the annular extingradientsAy/2 along thex and { axes and— A, along they

tion regime first observed by Kattat al>® However, it axis, and a line vortex of strengihlocated along the axis.

should be kept in mind that this work constitutes only a first  In reality, however, the vorticity will be distributed over

step towards the understanding, using asymptotic techniques, region of characteristic siz&, around the axis. In the

of the complex physical mechanisms involved in flame vor-present analysis we shall assume that the characteristic size

tex interaction. of the vorticity distribution is small compared with the char-

acteristic scaleI{/Ay)Y? of the asymptotic structure of the

flow. Then, the vorticity is confined to a small core around

the origin, with

(A1)
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.. . H H H H =1
core. As a consequence, the characteristic turnoverdijle ~ Wherer= At is the nondimensional time based A5~ and
will be small compared with the characteristic strain timefor the rest of the variables we maintain the notation used in

Ayt the dimensional formulation.
Thus we will seek a solution of the vorticity equation In the limit Rg-—=°, the vorticity is strongly localized at
the origin, and(A9) is identically satisfied by any axisym-
dw ic distributi ici : '
2 o UVeo=0 Vu+ V20, (A4) metric distribution of vorticity, for which bothi, and dw/d96

at are identically zero. In this limit, when,=T"/(2mp), the

) ] ] o ) velocity field (A5) corresponds to the superposition of a
in which there is only & component of vorticity, a8ssuming  yree-dimensional stagnation point flow with velocity gradi-

that both the vorticity and the velocity induced by it are entsA,/2 along thex and ¢ axis and— A, along they axis
independent of,. Introducing cylindrical-polar coordinates 4n4 a line vortex of strength located along the axis.

(p,6,0), with x=p cos6 andy=p sin6, we may write For Rg>1, the vorticity distribution is slightly non-
A axisymmetric, and the radial velocity{, and the azimuthal
u §=70§, (A5a) derivative dw/96 are both of order I?e1 Moreover, the con-
tinuity equation provides the estimatei,/d¢6~u;,, which
1 3 A, suggests expanding the solution in powers oﬁ?as
u=(—5+5cos28|—p+u (p,6,t), A5b _
! ( 2 2 ) 2 PP 0 (ASD) o(p,0,1)=wo(p,t) +Re * wy(p, 0,t)+ -, (A10a)
3 . A u'(p,0,t)=Re-tu1(p,0,1)++ -+, A10b
u,,z( —Esm 20 70p+u;(p,6,t), (A5c¢) o(P 0D =R& "y (p, 6,1) ( )
uy(p,8,t)=u(p,t)+Re T ul(p,6,t)++-.  (A10c)
where u; and uy, represent the perturbation velocity field ) . o . )
induced by the vorticity distribution Introducing this expansion in EGA9) and integrating
from 6=0 to 2w, we obtain the following equation for the
1 d(puy) 1 du’ leading order vorticity distribution:
w(p,ﬁ,t)Z——a———;. (AB)
p dp pJd dwg p dwg wg 1 9 ( awo) (ALD)
Then, Eq.(A4) can be written as ar 4 dp 2  pdp P ap
o 1 3 Ao oW As shown by Lundgrer® solutions to this equation may
EJF[( — 5t 5c08 29)7P+ u, Tp be found from solutions of strictly two-dimensional flows
with the same initial conditions by means of the transforma-
N ( 3 . ” A0+u’0 dw tion
ESIn 7 ? ﬁ e7/2_1
® (p,T)=e”ZQ<eT’4p, ) (A12)
A, 10/ do\ 1w ° 172
=—owtv——|p—|+—=— (A7) . o _ .
2 pap\=dp|  p? 96? where the function()(p’,7') satisfies the axisymmetric heat
. . . equation
to be integrated with the boundary conditiar-0 at p—o,
and regularity conditions gi=0, while the continuity equa- Q1 9 , 00 A13
tion for the perturbation velocity field), anduj,, adopts the ar’ p ap’ p ap’) (A13)

two-dimensional form o . . .
However, it is well known that any axisymmetric vortex will

gru, duy decay to Gaussian with timé.Thus, in what follows we
ap * ﬁzo’ (A8)  shall restrict our attention to solutions of the form

so that a stream functior may be introduced, such that y 1 p'?
= —V2y, with u’=(Llp) a8, uj=— 3yl ap. Qp"m)=—5exp —— |, (A14)
; /2 1/2 Q Q
Introducing @/Ag)Y? Ag, T/(vIAg)Y? andAI'/v as
length, time, velocity and vorticity scales, respectively, Eq.where the vorticity() has been scaled in order to adjust the
(A7) takes the nondimensional form circulation of the vortex to its unitary nondimensional value
[o2mp' Q(p',7")dp’ =1.

U,ﬂ-i- u_,’,a_w+i (9_w+ —E+§cosz9 pow Substituting (A14) into (A13) we obtaindésa/dr’ =4,
Pdp p 90 Re|dr 2 2 2 dp which can be integrated with the initial conditiaﬁﬁ(O)

= 8% to give 65 = 63+47'. Then, Eq.(A14) implies that the
+| = §sin 29)&‘9_‘" amplitude of the vorticity distribution should decrease in-
2 2 96 versely with time, which guarantees that the vortex circula-

5 tion is constant.
= i & E i(pa_w) + i ‘9_‘”] (A9) According to Lundgren’s transformation, the leading or-
Re|2 pdp\" dp) p? 962 der vorticity distributionw, will be given by
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