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We describe the perturbations introduced by two counter-rotating vortices—in a two-dimensional
configuration—or by a vortex ring—in an axisymmetric configuration—to the mixing layer between
two counterflowing gaseous fuel and air streams of the same density. The analysis is confined to the
near stagnation point region, where the strain rate of the unperturbed velocity field,A0 , is uniform.
We restrict our attention to cases where the typical distance 2r 0 between the vortices—or the
characteristic vortex ring radiusr 0—is large compared to both the thickness,dv , of the vorticity
core and the thickness,dm;(n/A0)1/2, of the mixing layer. In addition, we consider that the ratio,
G/n, of the vortex circulation,G, to the kinematic viscosity,n, is large compared to unity. Then,
during the interaction time,A0

21, the viscous and diffusion effects are confined to the thin vorticity
core and the thin mixing layer, which, when seen with the scaler 0 , appears as a passive interface
between the two counterflowing streams when they have the same density. In this case, the analysis
provides a simple procedure to describe the displacement and distortion of the interface, as well as
the time evolution of the strain rate imposed on the mixing layer, which are needed to calculate the
inner structure of the reacting mixing layer as well as the conditions for diffusion flame extinction
and edge-flame propagation along the mixing layer. Although in the reacting case variable density
effects due to heat release play an important role inside the mixing layer, in this paper the analysis
of the inner structure is carried out using the constant density model, which provides good
qualitative understanding of the mixing layer response. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1718956#

I. INTRODUCTION

The interaction of vortices with mixing layers is of great
importance for the understanding of fundamental combustion
processes, such as turbulent combustion and combustion
instability.1,2

Often, the characteristic scales associated with the com-
bustion processes are smaller than the smallest scales of the
turbulence.3 Then, combustion occurs in the form of laminar
flames embedded in thin mixing layers that are locally dis-
torted and strained by vortices of different scales. This has
led to the development of a variety of flamelet models. These
models consider a turbulent flame to be formed by an en-
semble of laminar flamelets, which may be extinguished if
subject to a supercritical local strain.4

Most flamelet models assume that a turbulent diffusion
flame behaves locally as a steady, strained, one-dimensional,
laminar flame.5,6 This is the base of the so-called laminar
flamelet assumption. However, steady strain models ignore
several features of turbulence-combustion interactions. In
particular, the unsteady response of combustion and transport
processes to the variations in the turbulent field—which may
induce extinction and reignition processes—and the effect of
curvature—which may alter the flame structure through
transverse diffusion—are removed. These limitations, dis-
cussed in detail by Cuenot and Poinsot,7 have led to the

development of flamelet models including transient effects8

and, more recently, to the development of the so-called un-
steady flamelet approach.9

Recent theoretical, numerical, and experimental analyses
have tried to quantify unsteady and curvature effects study-
ing the response of a one-dimensional laminar flame to vari-
able strain rate5,10–15 and the interaction of vortices with
flames~see the recent review article by Renardet al.2 and
references therein!.

Aspects of the interaction of single vortices with reacting
mixing layers—or diffusion flames—have been studied ana-
lytically by Marble,16 Karagozian and Marble,17 Baum
et al.,18 Cetegen and Sirignano,19 and Liñán.20 Similar inves-
tigations were carried out by Peters and Williams,21 who
analyzed the roll-up of a premixed flame by a single vortex,
and by Karagozian and Manda,22 who studied the effect of a
pair of counter-rotating vortices on a diffusion flame. These
analyses aimed to describe the flame structure, the global
enhancement of the chemical reaction due to the vortex roll-
up, and the structure of the burned core.

The interaction of vortices with flames has also been
studied in different configurations both numerically23–25 and
experimentally26–28 by several authors. In particular, the
head-on interaction of a vortex pair or vortex ring with a
laminar flame is a very simple configuration that has re-
ceived great attention in the last years.29–37 This kind of in-
teraction provides relevant information such as the time evo-
lution of the flame front,38 the flame structure, as well asa!Electronic mail: vera@tupi.dmt.upm.es
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information on extinction limits, pocket formation, effects of
vortex size and strength, etc.

The aim of this work is to contribute to the understand-
ing of the response of mixing layers~or diffusion flames! to
the perturbations by vortices, analyzing the simple configu-
ration of the head-on interaction of laminar vortex pairs—or
vortex rings—with counterflow strained mixing layers. The
analysis will be carried out, assuming constant density, for
the cases of interest when the thicknessesdm of the mixing
layer anddv of the vorticity core of the vortices are small
compared to the characteristic core to core distance or vortex
ring radiusr 0 .

In this case, three characteristic times arise in the prob-
lem, the baseline strain time,A0

21, the turnover time of the
vortices,tT;r 0

2/G, and the viscous time,tv;r 0
2/n, whereA0

denotes the~baseline! strain rate experienced by the unper-
turbed mixing layer andG denotes the strength of the vorti-
ces. Then, if the vortices are to maintain their identities dur-
ing the interaction, the viscous time must be large compared
to the other two time scales,tv@A0

21 and tv@tT , which
leads naturally to the assumption that both Reynolds num-
bers,A0r 0

2/n andG/n, must be large compared to unity. Then,
the ratio of the baseline strain time to the turnover time,
tT /A0

21;G/r 0
2A0;1, assumed to be of order unity, emerges

here as the main parameter of the problem. In this case we
are allowed to neglect the viscous effects to obtain a simple
description of the flow field and the evolution of the vortices
and of the distorted mixing layer. The results of this analysis
will be used later to describe the internal structure of the
mixing layer.

One aspect of special relevance in this kind of interac-
tion is the distortion of the mixing layer by the vortices,
which increases the flame surface area and enhances molecu-
lar mixing. Here we shall analyze the effects of this distor-
tion on the distribution in the mixing layer of the so-called
mixture fractionZ, a conserved scalar of unit concentration
in the fuel stream and zero concentration in the air stream. In
the Burke–Schumann limit of infinite reaction rates, the mix-
ture fraction characterizes the diffusion flame structure when
the mass and thermal diffusivities are assumed to be equal.
In this case, the flame sheet is located at the surface whereZ
takes its stoichiometric valueZs, and the rate of fuel con-
sumption per unit flame surface is characterized by the value
u¹Zus of the mixture fraction gradient at the stoichiometric
surface. See, for example, the books of Williams1 and
Peters.3

When the effective activation energy of the overall reac-
tion is large, diffusion flame extinction occurs, with small
changes from the Burke–Schumann flame structure, when
the thickness of the reaction layer,d r , is still small compared
with the effective thickness,dm;u¹Zus

21, of the mixing
layer. In fact, the local extinction of the flame occurs when
the instantaneous valuexs5DTu¹Zus

2 of the scalar dissipa-
tion rate at the stoichiometric surface, which is the inverse of
the characteristic diffusion timedm

2 /DT , grows to values of
the order of the inverse of the residence timeDT /SL

2 across
the preheated zone of the stoichiometric premixed flame.3,4

Here DT is the thermal diffusivity of the mixture andSL

denotes the propagation velocity of the stoichiometric pre-
mixed flame.

Under near-extinction conditions, the structure of the
thin reaction layer, with characteristic response timed r

2/DT

small compared withdm
2 /DT;xs

21, is quasi-steady and
quasi-planar during the time of interaction of the vortex and
the mixing layer. The critical value ofxs for extinction can
then be taken to be equal to the extinction valuexs,e of a
planar steady diffusion flame, which can be obtained experi-
mentally or using numerical calculations based on a detailed
kinetic scheme. Nevertheless, unsteady effects play a key
role in determining the evolution of the outer mixing layer
structure, and therefore ofxs, which in turn determines the
conditions for the local extinction of the flame. For this rea-
son, our main concern in this paper will be the description of
the time and spatial evolution ofxs during the vortex mixing
layer interaction.

During the flame vortex interaction, local extinction of
the flame will occur as soon as the transient scalar dissipa-
tion rate imposed by the vortex, which is roughlyxs;tT

21

;G/r 0
2, increases above a certain critical value. This can be

achieved both by decreasing the vortex size,r 0 , which, on
the other hand, reduces the Reynolds number of the flow, or,
alternatively, by increasing the strength of the vortex,G,
which increases the Reynolds number of the flow. Then, the
main advantage of considering vortices that are both ‘‘large
and strong’’ is that one is able to decouple the diffusive pro-
cesses that occur at the vortex core~diffusion of vorticity!
from those that take place at the mixing layer~diffusion of
species!, and that it is possible to use boundary-layer analy-
sis.

The analysis could also be used for the description of the
dynamics of triple flames, or of flame-edges, that form after
the local extinction of diffusion flames. The local extinction
of the flame leads to the formation of extinguished holes~or
annulus!, where both reactants mix without reaction. These
regions are separated from the diffusion flame by a flame-
edge that can propagate in either direction—as an ignition or
extinction front—depending on the local flow conditions.
Thus, for values of the scalar dissipation rate smaller than a
critical value,xs,xs,crit, they propagate along the stoichio-
metric surface towards the unburned mixture in the form of
triple flames~ignition fronts!, while for xs,crit,xs,xs,e they
behave as extinction fronts that recede away from the un-
burned mixture.39,40The detailed analysis of the scalar dissi-
pation rate along the flame surface is therefore of interest for
the subsequent evolution of extinguished holes.34

The characteristic scales of the vortices and of the mix-
ing layer are introduced in Sec. II, while the dynamics of the
vortices and the flow field are described in Sec. III. The
formulation of the inner structure of the mixing layer is
given in Sec. IV and the numerical results are presented in
Sec. V. The asymptotic description of the interaction in the
limits of large and small effective vortex strength is outlined
in Secs. VI and VII. Finally, some conclusions are presented
in Sec. VIII.
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II. CHARACTERISTIC SCALES IN THE INTERACTION
OF VORTEX PAIRSÕRINGS WITH MIXING LAYERS

A. Freely propagating vortex pairs Õrings

In this section we discuss the characteristic scales for the
dynamics of vortex pairs, of circulationG and core to core
distance 2r c , and of vortex rings, of circulationG and radius
r c , with a core thickness of sizedv!r c .

For vortex pairs the characteristic length isr c , while the
characteristic velocity isVI5G/4pr c . This is the velocity of
displacement of the vortex pair when the Reynolds number
ReG5G/n, which is roughly the ratio of the diffusion time
r c

2/n to the turnover timer c /VI , is large compared with
unity. Note that the propagation velocityVI of a vortex pair
does not depend on the size of the vorticity core, if this size
dv is small compared withr c .

These scales are also applicable for vortex rings, al-
though the velocity of self-propagation depends on the ratio
dv /r c in the form

VI5
G

4pr c
S log

8r c

dv
2

1

4D , ~1!

as obtained by Lord Kelvin41 for a circular core of uniform
vorticity.

As it is well known,42 the streamlines in the reference
frame moving with the vortex pair or ring demonstrate the
existence of a bubble of fluid that is transported by the vor-
tices, which becomes doughnut shaped for vortex rings for
small values ofdv /r c , such that

VI

G/2r c
5

1

2p S log
8r c

dv
2

1

4D.1. ~2!

If the fluid used in the generation of the vortices and
transported by them differs from the surrounding fluid, it is
bounded by a mixing layer with a thickness of order
(n/AT)1/2, where AT5VI /r c;G/4pr c

2 is the characteristic
value of the strain due to the vortices. Thus, if we want the
vortices to maintain their identities (n/AT)1/2 must be small
compared withr c , which is the case ifG/4pn@1.

B. Vortex pairs Õrings subject to strain

We shall now analyze the dynamics of the vortices when
they move, under the conditions ReG;G/4pn5VIr c /n@1
anddv /r c!1, in the straining flow field associated with two
counter-flowing irrotational streams of the same density, and
with a strain rateA0 . Our aim is to analyze the perturbations
of the mixing layer by the vortices in cases where the thick-
ness of the unperturbed mixing layer,dm05(DT /A0)1/2, is
small compared withr c .

The motion of the vortices results from the superposition
of the velocity due to the strain and the self-induced velocity
VI . As a consequence, the core to core distance of the vortex
pair, or the vortex ring radius, will grow with time at rates

drc

dt
5A0r c and

drc

dt
5

A0

2
r c , ~3!

respectively. Then, in order to characterize the size of the
vortices, we shall use the valuer 0 of r c at the time of cross-

ing of the vortices through the original plane of the mixing
layer. Here we are interested in cases where the Reynolds
number

Re05
r 0

2A0

n
5

1

PrS r 0

dm0
D 2

~4!

is large compared with unity. In addition, we shall assume
that the Prandtl number Pr5n/DT is of order unity, as typi-
cally occurs for gaseous mixtures.

The dynamics of the vortex pair or vortex ring will de-
pend on the nondimensional circulation of the vortices,G̃,
defined below in~8! and ~22! for vortex pairs and vortex
rings, respectively, which is the ratio of the characteristic
self-induced strain due to the vortices, and the basic strainA0

of the unperturbed flow. For small values ofG̃ the basic
strain will rapidly transport the vortices to the mixing layer
and increaser c exponentially with time.

For large values ofG̃ the interaction between the vortices
and the basic strain involves two main time scales, the char-
acteristic strain time,A0

21, and the turnover time of the vor-
tices, 4pr 0

2/G, which is small, by a factorG̃21, compared to
A0

21 when G̃@1.

III. VORTEX DYNAMICS AND DISTORTION OF THE
MIXING LAYER

Under the assumptions stated above, in the following
sections we shall analyze the perturbations introduced by
two counter-rotating vortices—in a two-dimensional
configuration—or by a vortex ring—in an axisymmetric
configuration—on the mixing layer in the stagnation region
between two gaseous counter-flowing streams of fuel and air,
as shown schematically in Fig. 1. Without loss of generality,
we consider that in the two-dimensional case the symmetry

FIG. 1. Schematic representation of the distortion by vortices of a mixing
layer in the stagnation region between two gaseous counterflowing streams
of fuel and air coming fromz→2` andz→`, respectively. The different
variables used in the description of the flow are clearly indicated.
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plane of the vortex pair coincides with that of the basic
strain, and in the axisymmetric case the vortex ring is coaxial
with the basic flow.

When both streams have the same density, the unper-
turbed potential velocity field near the stagnation point is
given by v52A0z and u5A0r in the planar case, and by
v52A0z and u5A0r /2 in the axisymmetric case. Herer
and z denote the radial and axial Cartesian coordinates tan-
gential and transverse to the unperturbed mixing layer, re-
spectively, andu andv represent the corresponding velocity
components along ther andz axes.

The perturbed mixing layer, whose thicknessdm is infi-
nitely thin compared withr 0 in the limiting case,G/n@1 and
r 0

2A0 /n@1, that we are analyzing, is seen as a passive inter-
face between the two counter-flowing fluids when these have
the same density. The variable density effects, due to the heat
release in the mixing layer, will be dependent on the outer
velocity and pressure fields generated by the dynamics of the
vortices, which is independent of the internal dynamics of
the mixing layer.

Effectively, due to thermal expansion, the mixing layer
can be viewed as a planar distribution of volume sources that
induces transversal displacement velocities. These velocities
generate an irrotational perturbation flow that has to be
added to the outer irrotational flow due to the baseline strain
and the vortices. This perturbation flow could be able to
modify the vortex path if the displacement velocities were
strong enough. However, this is not the case in the limiting
case considered here. Using order of magnitude estimates, it
is easy to see that the ratio of the~viscous! transversal
displacement velocities,vm;(nAT)1/25(nVI /r c)

1/2, to the
characteristic velocity of the vortices,VI5G/4pr c , is of
order

vm/VI;~n/VIr c!
1/25~4pn/G!1/2, ~5!

which is clearly small when the Reynolds numberG/4pn is
large. Therefore, being consistent with the approximation of
thin-cored vortices, which required the assumption
G/4pn@1, we may also neglect the effect of thermal expan-
sion on the outer irrotational streams.

The interaction between the vortices and the mixing
layer is much more complex in the more general case of
counter-flowing streams with different densities,43,44which is
not treated here. In this case vorticity is generated at the
interface by baroclinic effects, which affects strongly the dy-
namics of the vortices and the interface distortion. This, in
turn, modifies the local values of the strain rate, whose time
evolution ultimately determines the flame response.

A. The two-dimensional case

The velocity field associated with the vortex pair, of cir-
culationG and core positionr c(t) andzc(t), has to be added
to the unperturbed straining field to obtain the instantaneous
velocity field, thus allowing us to calculate the time evolu-
tion of the vortex core position.

The evolution of r c and zc with time is obtained by
evaluatingu andv at the vortex core (r c ,zc) leaving out the
local self-induced velocity due to the vortex,

drc

dt
5A0r c ,

dzc

dt
52A0zc2

G

4pr c
. ~6!

When these equations are integrated using as initial condi-
tions the valuesr 0 andz0 of the vortex position att50, we
obtain the nondimensional vortex core position

r c /r 05jc5et, zc /r 05hc52G̃te2t, ~7!

which is shown in Fig. 2, written here in terms of the non-
dimensional timet5A0t and the nondimensional coordi-
natesj5r /r 0 and h5z/r 0 . Here we have chosen as time
origin the time of passage of the vortex pair through the
original interface between the two streams.

Then, the ratio

G̃5G/4pr 0
2A0 , ~8!

appearing in~7!, equal to the ratioVI0 /A0r 0 of the charac-
teristic self-induced velocity,VI05G/4pr 0 , of the vortex
pair to the radial velocityA0r 0 of the vortices, is the main
parameter that characterizes the interaction of the vortex pair
with the mixing layer.

If we measure the velocities with the scaleA0r 0 , the
instantaneous velocity field,ũ5u/A0r 0 , ṽ5v/A0r 0 , is
given by

ũ5j22G̃F h2hc

~j2jc!
21~h2hc!

2

2
h2hc

~j1jc!
21~h2hc!

2G , ~9a!

FIG. 2. Trajectory of the vortex pair~left! and vortex ring~right! in the
(r ,z) plane. The trajectory of the vortex ring is shown for different values of
a0 , for Rev052 ~dashed!, 8 ~solid!, and 80~dotted!. Note that the transverse
coordinate is normalized withG̃r 0 whereas the axial coordinate is normal-
ized with r 0 .
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ṽ52h12G̃F j2jc

~j2jc!
21~h2hc!

2

2
j1jc

~j1jc!
21~h2hc!

2G . ~9b!

The position at various times of the mixing layer, which
is infinitely thin in the limiting case,G/n@1 and A0r 0

2/n
@1, that we are analyzing, corresponds to the time evolution
of the fluid surface which att→2` is at h50.

Thus, the centerplane valuehm5zm/r 0(,0) of this
mixing layer, which corresponds toj50, is given from Eq.
~9b! by

dhm

dt
52hm2

4G̃jc

jc
21~hc2hm!2

, ~10!

wherejc and hc are given by~7!, complemented with the
boundary conditionhm50 at t→2`.

The time evolution of the nondimensional strain rate,Ã
5A/A0 , at the lower point region of the mixing layer can be
calculated using~9a! at h5hm andj!jc . This gives

Ã5
ũ

j
511

8G̃~hc2hm!jc

@jc
21~hc2hm!2#2

, ~11!

which, as will be shown below, we need in order to calculate
the time evolution of the mixing layer thickness and the sca-
lar dissipation rate, which determines the time of extinction
of the diffusion flame.

B. The axisymmetric case

The formulation of the problem is more involved in the
case of the axisymmetric motion of a vortex ring in a coun-
terflow. The self-induced velocityVI of a vortex ring de-
pends on the circulation,G, the radius of the vortex ring,r c ,
and the apparent size,dv , of the vortex core, which in addi-
tion depends on the vorticity distribution, as discussed in
detail by Saffman.42

For the self-induced velocity of a vortex ring we shall
use the value

VI5
G

4pr c
S log

8r c

dv
2CD , ~12!

where the constantC depends on the shape of the vorticity
distribution within the core. Here we shall use the valueC
50.558 corresponding to a Gaussian vorticity distribution,42

as discussed in detail in the Appendix. The vortex core size is
defined by

dv
25

2p

G E
0

`

r3v~r,t !dr ~13!

in terms of the instantaneous value of the vorticityv(r,t) at
a distancer from the vortex centroid. Then the dynamics of
the vortex ring is given by

drc

dt
5

A0

2
r c , ~14!

dzc

dt
52A0zc2

G

4pr c
S log

8r c

dv
2CD . ~15!

Due to the stretching associated with the growth of the
vortex ring radius, the sizedv of the vorticity core will also
change with time. If we neglect viscous diffusion, the vol-
ume of the vorticity core, proportional tor cdv

2, should re-
main constant, as is usually assumed in inviscid vortex rings
models ~e.g., Miloh and Shlien,45 Miyazaki and Kambe,46

Tyvand and Miloh47!.
On the other hand, when the diffusion timedv /n is of

the order of the strain timeA0
21, the distribution of vorticity

in the vortex core will eventually reach a steady state char-
acterized by a radial balance between convection and diffu-
sion, leading to a constant value of the vortex core thickness
of the order of the characteristic viscous length (n/A0)1/2.

In particular, if we measure the characteristic viscous
time of the vortex coredv

2/n with the characteristic strain
time A0

21 we obtain the Reynolds number

Rev5
dv

2A0

n
5S dv

r 0
D 2

Re0 , ~16!

which can also be viewed as the square of the nondimen-
sional vortex core thickness based on the viscous length
(n/A0)1/2. The time evolution of the vortex core size can
only be determined from a detailed analysis of the vorticity
dynamics within the core. This analysis, which is left to the
Appendix, gives

Rev581~Rev028!e2t/2 ~17!

where Rev05dv0
2 A0 /n denotes the value of Rev at t50.

Thus, to characterize the vortex ring we shall use its
constant circulationG together with the valuesr 0 anddv0 of
the vortex ring radiusr c and the vortex core thicknessdv

when the vortex ring crosses, at timet50, the unperturbed
position of the dividing surfacez50 of the mixing layer.

Then,r c andzc will be given by the solution of~14! and
~15! with the boundary conditionsr c5r 0 and zc50 at t
50, and withdv given by~16! and~17! as a function of time.
This yields

r c /r 05jc5et/2 ~18!

that can be used to write

dhc

dt
52hc2

G

4pr 0
2A0

e2t/2H 2pa01
t

2
2

1

2
logF 8

Rev0

1S 12
8

Rev0
De2t/2G J . ~19!

Here we have introduced the parameter

a05
VI0

G/2r 0
5

1

2p S log
8r 0

dv0
2CD5

1

2p S log
8 Re0

1/2

Rev0
1/2

2CD ,

~20!

or nondimensional form of the self-induced velocityVI0 at
t50, which determines the structure of the flow when the
vortex ring crosses the original plane of the mixing layer.
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Equation~19! can be integrated with the boundary con-
dition hc50 at t50 to give

hc

G̃
52F2a02

1

p
1

1

2p S t2 log
Rev

Rev0
D Ge2t/2

1F2a02
1

p
1

1

2p S Rev0

8
21D S t

2
1 log

Rev

Rev0
D Ge2t

~21!

where Rev is given by Eq.~17! as a function of time in terms
of its initial value Rev0 at t50. Figure 2 shows the trajecto-
ries of the vortex core in the plane (r ,z) for different values
of a0 and Rev0 .

In ~21!, the nondimensional vortex strength

G̃5G/2r 0
2A0 ~22!

is the ratio of the characteristic turnover velocity of the vor-
tex, G/2r 0 , to the baseline strain velocityA0r 0 at a distance
r 0 from the stagnation point. Alternatively, it can also be
viewed as the ratio of the characteristic strain induced by the
vortex ring,G/2r 0

2, to the basic strain,A0 , or as the ratio of
the basic strain time,A0

21 , to the turnover time, 2r 0
2/G. It is

important to note that the above definition of the nondimen-
sional vortex circulationG̃ differs from that of the two-
dimensional case by a factor of 2p.

In the following, we shall restrict our attention to values
of a0 smaller than unity, which corresponds to values of
dv /r c*1/117 for which the domain of fluid traveling with
the vortices remains bubble shaped,42 as is typically ob-
served in the experiments.

To calculate the instantaneous velocity field at any point
(r ,z) other than (r c ,zc), we need to add to the unperturbed
velocity field, u5rA0/2 and v52zA0 , the velocity field
induced by the vortex ring. Then, the nondimensional veloc-
ity field can be written as48

ũ5
j

2
2

G̃

pjc
S jc

2j D 3/2S h2hc

jc
D I 1~m!, ~23a!

ṽ52h1
G̃

pjc
S jc

2j D 3/2F j

jc
I 1~m!2I 0~m!G , ~23b!

where I 0 and I 1 can be expressed in terms ofK and E, the
complete elliptic integrals of the first and the second kind, as

I 0~m!5E
0

p du

11m2cosu
5

2/m

~21m!1/2
E~k!, ~24!

I 1~m!5E
0

p cosu du

11m2cosu

5
2

~21m!1/2F11m

m
E~k!2K~k!G , ~25!

with

m5
~h2hc!

21j21jc
2

2jjc
21, ~26!

k5S 2

21m D 1/2

. ~27!

In particular, the vertical evolutionhm5zm/r 0 of the
mixing layer in the near-axis region, wherer !r c , is given
by the integration of

dhm

dt
52hm2

G̃jc
2

@jc
21~hc2hm!2#3/2

, ~28!

wherejc andhc are given by~18! and ~21!, with the initial
conditionhm50 at t→`, which provides, together with Eq.
~21!, the evolution of the strain rate experienced by the mix-
ing layer at the axis of symmetry

Ã5
A

A0
511

3G̃jc
2~hc2hm!

@jc
21~hc2hm!2#5/2

. ~29!

IV. STRUCTURE OF THE MIXING LAYER

A. Conservation equations and thermochemical
model

In the Burke–Schumann limit of infinitely fast chemistry
the fuel and oxygen do not coexist. Their mass fractionsYF

and YO2
, which satisfy the relationYF•YO2

50, can be cal-
culated, if we assume equal diffusivities of mass and heat
DT , in terms of the mixture fractionZ, which is defined by

Z5
SYF /YF02YO2

/YO2011

S11
~30!

in terms of the mass fractions of fuel and oxygen at their
corresponding feeding streams,YF0 andYO20 , and the air to
fuel mass stoichiometric ratioS5sOYF0 /YO20 , wheresO de-
notes the mass of oxygen consumed per unit mass of fuel.
Then the temperatureT, given by T5T01gT0(12YF /YF0

2YO2
/YO20), can also be obtained in terms of the mixture

fraction, whereT0 is the temperature of the feeding streams,
and g is the heat release parameter, defined byg
5qYF0 /@cpT0(11S)# in terms of the heat releaseq per unit
mass of fuel consumed, and the specific heatcp at constant
pressure, assumed here to be constant.

If we assume, in addition, constant values for the gas
densityr and the thermal diffusivityDT , the conservation
equation for the mixture fractionZ can be written as

]Z

]t
1u•¹Z5DT¹2Z, ~31!

where the velocity fieldu5(u,v) is given by~9! in the two-
dimensional case and by~23! in the axisymmetric case. This
equation is to be solved with the boundary conditionsZ50
in the oxidizer stream andZ51 in the fuel stream, and then
the flame sheet is given byZ5Zs51/(S11).

B. Asymptotic solution for large Peclet numbers

To describe the distribution of the mixture fraction in the
mixing layer when the Reynolds numberA0r 0

2/n is large, we
define a system of orthogonal curvilinear coordinates (s,n)
attached to it, as shown in Fig. 1. Heres and n denote the
distances measured along and normal to the mixing layer,
respectively, with the origin ofs located atr 50.
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In the coordinate system attached to the mixing layer, the
continuity equation takes the form

]~r jus!

]s
1

]~r jun!

]n
50, ~32!

where j 50 in the two-dimensional case andj 51 in the
axisymmetric case, andus and un denote the local velocity
components along thes andn axis.

Since the density is assumed to be constant, the term
](r jus)/]s takes a constant value across the mixing layer.
Then, Eq.~32! can be integrated with the boundary condition
un50 at n50 to give

un52nA~s,t !, ~33!

where

A~s,t !5
1

r j

]~r jus!

]s
~34!

is the local strain rate imposed by the flow on the mixing
layer, to be discussed in Sec. V below, and Eq.~31! can be
written as

]Z

]t
1us

]Z

]s
2nA

]Z

]n
5DT

]2Z

]n2
. ~35!

The solution of this equation must be symmetric, and ana-
lytic, at s50, and satisfy the boundary conditionsZ50 as
n→` andZ51 asn→2`.

It should be noted that in Eq.~35! we have dropped out
the effects of curvature, which are of order Pe0

21/2!1. Here
Pe05A0r 0

2/DT denotes the Peclet number of the unperturbed
flow, which is large whenA0r 0

2/n is large since the Prandtl
number Pr5n/DT is of order unity for gases. Similarly, we
have neglected the longitudinal diffusion term, of order
Pe0

21, which is even smaller than the curvature terms.
According to this, when the characteristic size of the

vortex pair or ring is large compared with the mixing layer
thickness, the effects of the curvature are negligible and, in
first approximation, the mixing layer behaves as quasi-
planar. This is in agreement with the experimental results of
Santoro,35 corresponding to fuels with unity Lewis number,
which show that the scalar dissipation rate at extinction is
independent of the radius of the vortex in the case of vortex
rings large compared to the original thickness of the mixing
layer.

It is easy to check that the solution of~35! has the self-
similar form Z(n,s,t)5Z0(h), where h5n/dm(s,t) is a
similarity variable8,49 defined by measuring the distance nor-
mal to the mixing layer with the local valuedm(s,t) of the
mixing layer thickness, to be given by Eq.~38! below. Writ-
ten in terms of the new variables,~35! takes the form

2h
dZ0

dh F 1

dm
S ]dm

]t
1us

]dm

]s D1AG5
DT

dm
2

d2Z0

dh2
. ~36!

This equation is satisfied ifdm(s,t) andZ0(h) are cho-
sen so as to verify the equations50

hZ0h1Z0hh50, ~37!

corresponding to a mixing layer subject to a constant unit
strain, where the subscripth indicates derivative, and

]dm
2

]t
1us

]dm
2

]s
52DT22Adm

2 , ~38!

obtained equating the bracketed term in Eq.~36! to DT /dm
2

and multiplying the resulting equation by 2dm
2 .

The solution of ~37! with the boundary conditions
Z0(`)5Z0(2`)2150 is

Z0~h!5~ 1
2!erfc~h/A2!, ~39!

a mixture fraction whose dependence ons and t is through
the local valuedm(s,t) of the thickness of the mixing layer,
given by Eq.~38!. This equation can be solved fordm

2 with
the method of characteristics using the initial conditiondm

2

5dm0
2 5DT /A0 at t→2` provided by the solution of the

unperturbed problem.
With Z0(h) given by Eq.~39!, the flame surface lies, in

first approximation, ath5hs, where Z05Z0s51/(S11),

given implicitly by Z0s5( 1
2)erfc(hs/A2). The nondimen-

sional mixture fraction gradient atZ05Z0s is

k~S![uZ0hus5~2p!21/2exp~2hs
2/2!, ~40!

a value that depends only onS and, therefore, does not vary
along the flame surface. This value can be used to calculate
the valuexs5DTu¹Zus

2 of the scalar dissipation rate at the
stoichiometric surface, given in nondimensional form by

xs/xs05dm0
2 /dm

2 ~41!

wherexs05A0k(S) is the scalar dissipation rate at the un-
perturbed flame.

The analysis provides also the mass of fuel burned per
unit surface per unit time,mf , proportional tou¹Zus, which
can be written in nondimensional form as

mf /mf05dm0 /dm, ~42!

wheremf05rYF0(DTA0)1/2(11S21)k(S) is the correspond-
ing fuel consumption rate at the unperturbed flame.

V. NUMERICAL RESULTS

To describe the distortion of the mixing layer it is con-
venient to introduce the Lagrangian parameterl and param-
etrize the perturbed mixing layer as x(l;t)
5(r (l;t),z(l;t)). Then, the local strain rate experienced by
the mixing layer, given byA52n•S•n, can be expressed in
nondimensional form as

Ã5
A

A0
5

2ũjhl
21~ ũh1 ṽj!jlhl2 ṽhjl

2

jl
21hl

2
, ~43!

wheren denotes the unit normal vector andS the velocity
gradient tensor, and the subscriptsj, h, andl identify partial
derivatives.

This expression involves the velocity gradients with re-
spect toj andh, as well as the derivatives of the coordinates
j and h with respect to the Lagrangian parameter. The
former can be obtained analytically, in the two-dimensional
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case, or numerically, in the axisymmetric case, while the
latter must be obtained by numerical integration of the prob-
lem

d

dt H j
h
jl

hl

J 5H ũ
ṽ

ũjjl1ũhhl

ṽjjl1 ṽhhl

J , ~44!

whered/dt denotes material derivative, with the initial con-
ditions j5 f (l), h50, jl5 f 8(l), andhl50 at 2t52t0

@min(G̃21,1). In this case a natural choice for the param-
etrization is to takef (l)5el, which defines the Lagrangian
parameterl as the natural logarithm of the radial coordinate
at t5t0 .

This procedure yields the position of the mixing layer
and the local strain rate experienced by it as a function of
time, what allows us to integrate the nondimensional form of
Eq. ~38!, namely

dd2

dt
5222Ãd2, ~45!

subject to the initial conditiond251 ast→2`. From this
we may calculate the evolution of the mixing layer thickness
and, using Eqs.~41! and ~42!, the values of the scalar dissi-
pation rate and the fuel consumption rate, respectively.

The numerical results, presented in Figs. 3–5, to be dis-
cussed below, were obtained using an adaptive Cash–Karp51

Runge–Kutta method with variable step size, based on em-
bedded Runge–Kutta formulas of fourth and fifth order, as
outlined by Presset al.52 ~p. 708!. The number of points used
in the description of the mixing layer ranged from 1000 to
4000, and the tolerance of the results was maintained at four-
digit accuracy.

A. Two-dimensional case

Figure 3 shows the location of the two-dimensional mix-
ing layer at various times for different values ofG̃. The dis-
placement of the mixing layer below its original plane, when
measured withr 0 , remains small at all times for small values
of G̃. This displacement grows linearly withG̃, and the in-
terface becomes strongly wrapped around the vortices when
G̃ is moderately large compared with unity.

The structure of the mixing layer at various times is
shown in Fig. 5~a! in the caseG̃510, showing the mixing
layer thickness in arbitrary units as well as the position of the
local maxima and minima of the strain and scalar dissipation
rates. It should be noted that while the peak scalar dissipation
rate is found at the center plane during the initial stages of
the interaction, it finally shifts to a radius of orderr c , with
peak values slightly higher than those encountered along the
center plane.

As discussed by Marble,16 during the roll-up process ob-
served in Figs. 3–5, the adjacent flame sheets begin to inter-
act as soon as the mixing layer thickness becomes of the
order of the spacing between the flame surfaces. As the sub-
sequent diffusion between adjacent flame elements depletes
the concentration of reactants, the reactant consumption rate
decreases, reducing the risk of local extinction, until the two
flame sheets eventually annihilate each other. This leads to
the formation of pockets of unburned reactants surrounded
by diffusion flames,53 which increases the effective flame
area and enhances the overall combustion process.38

As can be seen, previous to this roll-up process the mix-
ing layer is strongly deformed in the rear part of the vortices,
eventually developing a sharp bend, where, obviously, the
assumption of negligible curvature leading to Eq.~35! ceases
to be valid. It should be noted, however, that in this region
the mixture fraction gradients are expected to decrease, as
discussed above, thus reducing the possibility of extinction

FIG. 3. Position at various times of the two-dimensional mixing layer for different values ofG̃. The planez50 ~dotted lines! has been displaced downwards
to avoid superposition of the plots. The vortex cores are represented by a1 sign.
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in agreement with the experimental observations~see, for
example, Ref. 30!. Nevertheless, the local failure of our
analysis in this region does not invalidate its applicability to
the forward part of the bubble, where all the assumptions
made are still valid. In fact, due to the increased values of the
local strain rate the mixing layer becomes even thinner in
this region, thus allowing us to neglect curvature effects with
more reason. This is in agreement with most of the previous
theoretical, numerical, and experimental work, which shows
that the critical conditions for local flame extinction occur in
the region ahead of the vortices~although not necessarily at
the forward stagnation point!, where the analysis presented
here is valid.

Figures 6~a!–6~c! show the time evolution of the peak
scalar dissipation rate along the mixing layer together with
its center plane value as a function of time for different val-
ues of G̃. In fact, in order to use the same scale in all the
plots, which makes the comparison of results easier, the fig-
ures show the inverse of the scalar dissipation rate, propor-
tional to the square of the mixing layer thickness. As can be
seen, except for small values ofG̃ the absolute maximum of
the scalar dissipation rate is only slightly higher~about a 4%!
than its maximum value at the center plane. Thus, we may
conclude that in the two-dimensional case the center plane
solution could be used to predict the conditions for local
flame extinction accurately. Note also the delay and attenua-
tion of the scalar dissipation rate with respect to the imposed
strain due to unsteady effects.

The perturbations induced by the vortices extend to dis-
tances of orderG̃1/2r 0 from the vortex core, which are small

compared withr 0 whenG̃ is small. In this case the perturba-

tions are much more important in the vicinity of the vortices,
where the scalar dissipation reaches its maximum value, than
in the symmetry plane.

B. Axisymmetric case

In the axisymmetric case the solution depends also on
the effective valuedv of the vortex core size through the
self-induced propagation velocity of the vortex ring. As pre-
viously discussed, the time evolution of the vortex core size
is given by the detailed analysis of the vorticity core dynam-
ics presented in the Appendix. This analysis shows that the
vortex core sizedv5(Rev n/A0)1/2 tends for large times to a
constant value determined by the radial competition between
convection and diffusion, which corresponds to Rev58. Here
Rev represents the Reynolds number based on the vortex core
size dv , the characteristic strain velocityA0dv , and the ki-
nematic viscosityn.

In what follows we shall assume that the dynamics of the
vortex core is such that the vortex core size is constant,
which corresponds to the case Rev[Rev058. It should be
noted that the assumption thatdv is constant is not critical,
since as shown by Eq.~12! the influence ofdv on the self-
induced propagation velocity is logarithmic, and therefore
the variations ofdv will have very little effect on the inter-
action process. This is especially true forG̃@1, when the
time scale of the interaction is much shorter than the charac-
teristic strain time, and the vortex core size, whose variations

FIG. 4. Position at various times of the axisymmetric mixing layer fora050.5, Rev058, and different values ofG̃. The planez50 ~dotted lines! has been
displaced downwards to avoid superposition of the plots. The vortex cores are represented by a1 sign.
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occur in times of orderA0
21, can be taken as constant during

the interaction.
Figure 4 shows the location of the axisymmetric mixing

layer at various times fora050.5 and different values ofG̃.
As can be seen, the effect of the nondimensional vortex
strength is similar to that of the two-dimensional case. The
structure of the mixing layer at various times is shown in
Fig. 5~b! in the casea050.5 andG̃510.

Figures 6~e!–6~i! show the peak value of the scalar dis-
sipation rate as a function of time along with its value at the
symmetry axis fora050.5, a050.7, and different values of
G̃. In this case, as the interaction proceeds the peak scalar
dissipation rate shifts from the axis to an annular region at a
distance of orderr c away from the axis, where the peak
scalar dissipation rate reaches its absolute maximum. How-
ever, this maximum value is now appreciably larger than the
maximum scalar dissipation rate at the symmetry axis. As a
consequence, we may conclude that in the axisymmetric case
the analysis of the near-axis region could fail to predict the
conditions for local flame extinction.

In particular, while sufficiently strong vortices could be
able to extinguish the flame at the axis, weaker vortices
could not be able to extinguish the flame there but would still
be able to extinguish it in the annular region where the peak
value of the scalar dissipation rate is reached. This may con-
tribute to explaining the unexpected annular quenching re-
gime observed by Kattaet al.30 for moderately strong vorti-
ces, which contrasts with the usual quenching at the axis of
symmetry observed for stronger vortices.

As a final remark, it should be noted that due to the
instability of the vortex ring to azimuthal bending waves, the

results presented herein are limited to values of the Reynolds
numberA1dv

2/n, based on the vortex core size,dv , and the
self induced strain,AI , experienced by the core, below a
certain critical value~about 60; see Refs. 54 and 55 for de-
tails!. Using the expression for the self-induced strain given
by Saffman55 @Eq. ~4.2!#, this leads to the approximate sta-
bility criterion

G̃&
4

3

60

Rev0~a02C8!
~46!

where C85( 17
122C)/2p is a constant equal to 0.186 for a

uniform vorticity distribution and 0.137 for a Gaussian vor-
ticity core. It is easy to check that all the results presented in
Figs. 4–6 verify this condition.

It should be pointed out that the stability criterion~46!
does not include the effect of the azimuthal stretching expe-
rienced by the core due to the growth of the vortex ring
radius. This is believed to act as a stabilizing effect, so that
the range of applicability of our analysis predicted by Eq.
~46! should be viewed as conservative.

C. Summary of results

Figure 7 summarizes the results in terms of the maxi-
mum scalar dissipation rate experienced by the flame
throughout the interaction. As can be seen, in the planar case
the maximum scalar dissipation rate is well predicted by the
centerplane solution for values ofG̃ of order unity or large
compared to unity. On the other hand, in the axisymmetric
case the maximum scalar dissipation rate is substantially
higher than that found at the axis, a difference that increases
with a0 . The picture also shows the asymptotic behavior for
large and small values ofG̃ obtained in the following sec-
tions, which is in very good agreement with the numerical
results.

VI. THE INTERACTION OF MIXING LAYERS WITH
STRONG VORTICES „G̃š1…

The distortion of counterflow mixing layers by strong
vortex pairs or vortex rings involves three different stages
due to the great disparity of the time scales involved in the
problem whenG̃@1, as seen in Figs. 6~c!, 6~f!, and 6~i!.

During the first stage, with a time scale of the order of
the vortex turn over time,G̃21A0

21, the vortices cross the
original plane of the mixing layer, which is strongly distorted
and eventually becomes wrapped around the bubble of fluid
that is transported by the vortices. During this stage, the
strain rate,A, and the scalar dissipation rate,xs, rise to peak
values of orderG̃A0 , although the scalar dissipation presents
an attenuation and a delay of orderG̃21A0

21 due to unsteady
effects, which in the case of the vortex ring depends on
dv0 /r 0 . As can be seen, this is the most critical stage for
local flame extinction.

In a second stage, with a characteristic time scale of the
order of the strain time,A0

21, the stagnation point values of
the strain and scalar dissipation rates decrease to their origi-
nal, unperturbed values. During this stage the mixing layer
becomes strongly wrapped around the vortices, while the
core to core distance, or vortex ring radius, grows due to the

FIG. 5. Structure at various times of the two-dimensional and axisymmetric
mixing layers corresponding toG̃510, a050.5, and Rev058, showing the
thickness of the mixing layer in arbitrary units and the local maxima/minima
of the strain rate~scalar dissipation rate! as hollow/solid circles~solid/
hollow triangles!. The location of the maximum scalar dissipation rate at
each time is indicated by an ‘‘e’’ denoting extinction point. The planez
50 has been displaced downwards to avoid superposition of the plots.
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basic strain. This reduces the self-induced velocity of the
vortices, which are eventually convected back to the stagna-
tion plane after reaching distances of orderz/r 0;G̃ below
the original plane of the mixing layer.

For t@1 the core to core distance, or vortex ring radius,
becomes exponentially large. Then, in a reference frame
moving with the vortex the velocity field becomes stationary,
and the mixing layer adopts the form of the dividing stream-
lines emerging from local stagnation points, near the vorti-

ces. A detailed analysis of this stage, which differently from

the first and second stages is present for all values ofG̃, will
be given in Sec. VII.

A. Analysis of the first stage of the interaction

During the first stage of the interaction the basic strain
has a negligible effect on the distortion of the mixing layer
~compared to the effect of the unsteady strain induced by the

FIG. 6. Maximum value of the scalar dissipation rate~solid lines! and value of the scalar dissipation rate at the center plane/symmetry axis~dashed lines! as
a function of time for different values ofG̃ along with their corresponding quasi-steady values, the maximum strain rate~dot-dashed lines! and the strain rate
at the center plane/symmetry axis~dotted lines!: ~a!–~c! two-dimensional case;~d!–~f! axisymmetric case fora050.5, Rev058; ~g!–~i! axisymmetric case for
a050.7, Rev058. The asymptotic value for large times is indicated by a horizontal dashed line.
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vortices! and the problem reduces in first approximation to
the distortion of a fluid surface by a vortex pair, or vortex
ring, impinging normal to it.

In a reference frame moving with the vortices the flow
field is steady and, as can be seen in Fig. 8, the initially flat
mixing layer becomes wrapped around the vortices in a time
of the order of the vortex turnover time,tc52pr 0

2/G, even-
tually adopting the form of the dividing streamline. This al-
lows us to evaluate the nondimensional strain rate at the
forward stagnation point,Âst5Asttc , and from it the nondi-
mensional thickness of the mixing layer there,d̂st

2

5dm,st
2 /DTtc5Âst

21.
Here we shall useĵ5j5r /r 0 , ĥ5h2hc5(z2zc)/r 0 ,

t̂5t/tc , û5u/(G/2pr 0), v̂5v/(G/2pr 0), and d̂
5dm/(DTtc)

1/2 as dimensionless variables, with the nondi-
mensional strain rate given by

Â5Atc5
2 v̂2ûĵ1ûv̂~ v̂ ĵ1ûĥ!2û2v̂ ĥ

û21 v̂2
. ~47!

Then, the integration of the problem

d

dt̂ H ĵ
ĥ

d̂2
J 5H û

v̂
222Âd̂2

J ~48!

with the initial conditionsĵ5 ĵ0!1, ĥ5ĥst, and d̂25 d̂st
2 at

t̂50 provides the evolution of the mixing layer thickness
along the dividing streamline, which yields the maximum
scalar dissipation rate at the flame surface

xs0/xs,max5~dm,min/dm0!
25 d̂min

2 BG̃21, ~49!

FIG. 7. Maximum scalar dissipation rate experienced along the mixing layer~solid lines! and maximum scalar dissipation rate at the center plane/symmetry
axis ~dashed lines! as a function ofG̃: ~a! two-dimensional case;~b!, ~c! axisymmetric case for Rev058 corresponding respectively toa050.5 and 0.7. The
leading-order asymptotic predictions determined in Secs. VI A and VII are also indicated~dotted lines!.

FIG. 8. ~a!–~c! Distortion at various nondimensional timest̂5t/(2pr c
2/G) of an initially flat fluid surface~solid lines! by freely propagating vortex pairs and

vortex rings impinging normal to it:~a! vortex pair;~b!, ~c! vortex ring, corresponding to~b! a050.5 and~c! a050.7. The local maxima~minima! of the strain
rate are indicated by hollow~solid! circles.~d!–~f! Structure of the mixing layer that develops between the fluid traveling with the vortices and the ambient
fluid: ~d! vortex pair;~e!, ~f! vortex ring, corresponding to~e! a050.5 and~f! a050.7. The points of maximum strain~hollow circles! and minimum mixing
layer thickness~solid triangles! are clearly indicated. The mixing layer thickness is plotted using the same scale in all the plots.
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whereB5 1
2 in the planar case andB5p in the axysimmetric

case.

1. Two-dimensional case

In the two-dimensional caseĥst5231/2, d̂st
254/31/2

.2.31, and the velocity field is given by

û52
ĥ

~ ĵ21!21ĥ2
1

ĥ

~ ĵ11!21ĥ2
, ~50!

v̂5
ĵ21

~ ĵ21!21ĥ2
2

ĵ11

~ ĵ11!21ĥ2
1

1

2
. ~51!

The structure of the mixing layer obtained from the in-
tegration of~48! with the above velocity field is shown in
Fig. 8~d!. The maximum scalar dissipation rate is reached at
two symmetric points at each side of the bubble, where
d̂min

2 .2.22. However, the scalar dissipation rate is approxi-
mately constant in the forward part of the bubble, its maxi-
mum value being only a 4% larger than its value at the for-
ward stagnation point. This confirms that in the planar case
the analysis of the centerplane solution is enough to deter-
mine the conditions for local flame extinction.

The thickening of the mixing layer in the vicinity of the
rear stagnation point is associated with the negative strain
imposed by the flow in that region.

2. Axisymmetric case

In the axisymmetric caseĥst52a0
21/3(12a0

2/3)1/2, d̂st
2

5@3pa0
4/3(12a0

2/3)1/2#21, and the velocity field can be writ-
ten as

û52~2ĵ !23/2ĥI 1~m!, ~52!

v̂52~2ĵ !23/2@ I 1~m!2 ĵI 0~m!#1pa0 , ~53!

where I 0 and I 1 are given by~24! and ~25! with m5( ĵ2

1ĥ211)/2ĵ21. The mixing layer structure obtained from
the integration of~48! with the above velocity field is shown
in Figs. 8~e! and 8~f!, corresponding toa050.5 and a0

50.7, respectively.
The minimum mixing layer thickness,d̂min

2 , along with
its quasi-steady value,Âmax

21 , and the mixing layer thickness
at the forward stagnation point,d̂st

25Âst
21, are shown in Fig.

9 as functions ofa0 .
As can be seen,d̂min

2 decreases monotonically witha0

whereasd̂st
2 reaches a minimum fora05( 4

5)
3/2, when the

strain rate at the forward stagnation point reaches its maxi-
mum. Note also that the ratiod̂min

22 /Âmax of the nondimen-
sional scalar dissipation rate to its quasi-steady value de-
creases almost linearly from 0.96 fora050.4 to 0.86 for
a051 due to unsteady effects.

B. Analysis of the second stage of the interaction

The previous analysis can be extended to describe the
structure of the mixing layer during the second stage of the
interaction by substitutingr 0 by r c as characteristic length
scale andG̃ by G̃eff5G̃/(r c /r 0)2 as effective~time-varying!

nondimensional vortex strength. The resulting analysis, valid
for large values ofG̃eff , gives the evolution of the maximum
scalar dissipation rate through Eq.~49! with G̃ substituted by
G̃eff .

VII. THE INTERACTION OF MIXING LAYERS WITH
VORTICES WHEN G̃effÄG̃Õ„r c Õr 0…

2™1

When the effective nondimensional vortex strengthG̃eff

5G̃/(r c /r 0)2;( l a/r c)
2 is small, the perturbations induced in

the vicinity of the vortex core by the second vortex—or by
the rest of the vortex ring—are negligible, and in first ap-
proximation the problem reduces to the interaction of a
single vortex with a counterflow mixing layer. In this case,
the characteristic scalel a of the asymptotic structure of the
flow is defined by equating the velocityG/2p l a induced by
the vortex to that due to the strainA0l a, which requiresl a

5(G/2pA0)1/2.
In the reference frame whose origin moves with the vor-

tex core, the flow field, shown in Fig. 10, becomes stationary,
and as the interaction proceeds the mixing layer eventually
adopts the form of the dividing streamlines that emerge from
the stagnation points6(xst,yst). This again allows us to
evaluate the nondimensional strain rate at the stagnation
points Ãst5Ast/A0 , and from it the nondimensional thick-
ness of the mixing layer there,dst

25dm,st
2 /dm0

2 5xs0/xs,st

5Ãst
21.
Here we shall usex5(r 2r c)/ l a, y5(z2zc)/ l a, ū5(u

2drc /dt)/A0l a, v̄5(v2dzc /dt)/A0l a, andt5A0t as non-
dimensional variables, with the nondimensional strain rate
given by

Ã5
A

A0
5

2 v̄2ūx1ūv̄~ v̄x1ūy!2ũ2v̄y

ū21 v̄2
. ~54!

Then, the integration of the problem

FIG. 9. d̂min
2 ~solid!, Âmax

21 ~dashed!, d̂st
25Âst

21 ~dot-dashed!, and d̂min
22 /Âmax

~solid-circles! as a function ofa0 .
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d

dt H x
y
d2
J 5H ū

v̄
222Ãd2

J , ~55!

with the initial conditiond25dst
2 imposed close to the stag-

nation points, provides the spatial evolution of the scalar
dissipation rate along the dividing streamline.

Notice that whenG̃!1 the effective nondimensional
vortex strengthG̃eff5G̃/(r c /r 0)2 is already small when the
vortices cross the original plane of the mixing layer, so that
the previous analysis will hold during all the interaction. On
the other hand, forG̃*1 one should wait times of order
A0

21 log G̃ after the beginning of the interaction to reach
small values ofG̃eff . In this case the previous analysis will
only hold at times such that the radius of the vortex is large
compared tor 0G̃1/2.

A. Two-dimensional case

In the two-dimensional case, the asymptotic velocity
field in the reference frame moving with the vortex core is

ū5x2
y

x21y2
, v̄52y1

x

x21y2
, ~56!

corresponding to the superposition of a two-dimensional
stagnation flow with velocity gradients 1 and21 along thex
andy axis, and a point vortex of unit strength located at the
origin. In this case, the strain rate at the stagnation points,
xst5yst5221/2, is given bydst

225Ãst52.
When measured with its unperturbed value, the maxi-

mum scalar dissipation rate obtained by integrating~55! with
the above velocity field isxs,max/xs05dmin

22 .2.57, a value
that does not depend on the strength of the vortices. This
explains the apparently paradoxical result, observed in Fig.
6, that the peak scalar dissipation rate tends to a constant
value for large times regardless of the strength of the vorti-
ces.

The location of the points of maximum strain and of
maximum scalar dissipation rate is also shown in Fig. 10.

B. Axisymmetric case

In the axisymmetric case, the asymptotic velocity field in
the reference frame moving with the vortex core is

ū5
x

2
2

y

x21y2
, v̄52y1

x

x21y2
, w̄5

z

2
, ~57!

wherez represents the local azimutal coordinate andw̄ the
corresponding velocity component, measured withl a and
A0l a, respectively.

The above velocity field corresponds to the superposi-
tion of a three-dimensional stagnation point flow, with veloc-
ity gradients 1

2 along thex and z axes and21 along they
axis, and a line vortex of unit strength located along thez
axis. In the axisymmetric case the azimuthal strain associated
with the growing radius of the vortex ring induces an aver-
age negative radial velocity towards the core. As shown in
Fig. 10~b!, this forces the streamlines to spiral into the origin,
resulting in a continuous ingestion of fluid towards the core.
This is in contrast to the closed streamlines obtained in the
two-dimensional case shown in Fig. 10~a!.

At the stagnation points, wherexst523/4321/2, yst

521/4321/2, we havedst
225Ãst.1.69. In this case the inte-

gration of ~55! with the velocity field given in~57! gives
xs,max/xs05dmin

22 .2.54. This value is surprisingly close to the
two-dimensional value and is also plotted in Fig. 6.

VIII. CONCLUSIONS

A constant density model has been presented for the low
Mach number interaction of vortex pairs and vortex rings
with counterflow reacting mixing layers in the limiting case
when the characteristic thickness of the mixing layer is small
compared to the characteristic size of the vortices. This sim-
plified approach presents many advantages, like introducing
analytical solutions for the velocity field. This leads to ana-
lytic developments that reduce the problem to solve a system
of ordinary differential equations. In particular, the structure
of the mixing layer is investigated using the classical mixture
fraction variableZ and neglecting curvature effects. This per-
mits us to find a self-similar solution, which allows us to
identify some of the key physical mechanisms involved in
flame–vortex interactions.

For large values of the nondimensional vortex strength
the interaction can be split in three different stages, which
can be described asymptotically in good agreement with the
numerical results. The first stage determines the conditions
for local flame extinction, the second stage determines the
conditions for pocket formation and triple flame propagation,
and the third stage reduces to the interaction of a single vor-
tex with a strained mixing layer.

In the planar case the scalar dissipation rate is almost
constant and very close to its maximum value up to distances
of order r c from the center plane. The center plane solution
can then be used to predict the conditions of local flame
extinction. On the other hand, in the axisymmetric case the
maximum scalar dissipation rate turns out to be much higher
than its value at the symmetry axis, and a detailed analysis of
the dynamics of the whole mixing layer is needed. In this

FIG. 10. Asymptotic structure of the flow in the vicinity of the vortex core
for G̃eff5G̃/(r c /r 0)2!1, showing the dividing streamlines that emerge from
the stagnation points~st! and the asymptotic position of the mixing layer for
large times~thick solid lines!: ~a! two-dimensional case;~b! axisymmetric
case. The points of maximum strain~hollow circles! and maximum scalar
dissipation rate~solid triangles! are clearly indicated.
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case the maximum scalar disipation rate is reached in an
annular region at radial distances of orderr c away from the
origin, leading in some cases to the existence of an annular
extinction regime similar to that observed by Kattaet al.30

For small values of the nondimensional vortex strength
the interaction takes place as if the vortices were isolated,
and the analysis reduces again to the interaction of a single
vortex with a strained mixing layer.

It is important to note that, as can be demonstrated by
simple kinematical arguments, the results presented herein
remain valid even when the symmetry axis of the vortices
does not coincide with that of the basic flow, as long as both
axes are parallel and the vortices propagate normal to the
unperturbed mixing layer. In this case we only need to
choose a reference frame with origin at the midpoint between
the vortex cores, or at the center of the vortex ring, to reduce
the problem to that analyzed here.

The assumption that the density is constant throughout
the mixing layer, which allowed us to write Eq.~36!, can be
relaxed without difficulty in the near-axis region, where a
similarity transformation can be used to simplify the govern-
ing equations to a set of one-dimensional equations even if
density changes are fully taken into account. This more real-
istic case presents overshoots in the tangential velocityus

due to the stronger accelerations suffered by the hot combus-
tion gases in the mixing layer, which in turn modify the
velocity componentun normal to the mixing layer, that will
no longer be given by Eq.~33!. Then, the strain rateA varies
across the mixing layer so that Eq.~35! no longer applies to
yield a closed form description ofZ. Far from the axis the
problem does not admit any simplifications and the solution
has to be obtained numerically.

Despite the apparent simplicity of the analysis, it has led
to results that are in qualitative agreement with the experi-
mental results of Santoroet al.32–35 In particular, Santoro35

claims that, during the interaction of the diffusion flame with
a strong vortex, the constant density model reproduces quali-
tatively well the experimental evolution of the strain rate,A,
and the scalar dissipation rate,xs , at the axis of symmetry as
long asA andxs are nondimensionalized with their baseline
strain values. This is in agreement with recent numerical
simulations carried out in our group concerning the effects of
dilatation on the structure of unsteady mixing layers.

The analysis has also contributed to the understanding of
previously unclear phenomena, such as the annular extinc-
tion regime first observed by Kattaet al.30 However, it
should be kept in mind that this work constitutes only a first
step towards the understanding, using asymptotic techniques,
of the complex physical mechanisms involved in flame vor-
tex interaction.
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APPENDIX: THE SELF-INDUCED VELOCITY OF A
VORTEX RING SUBJECT TO STRAIN

In this appendix we analyze the vorticity distribution of
a vortex ring of circulationG subject to a coaxial, axisym-
metric strain with axial and radial velocity gradients2A0

andA0/2, respectively.
It is well known that the dynamics of a vortex ring of

radiusr c and circulationG depends on the characteristic size
dv of the vorticity core.42 Since the circulation of the strained
vortex ring is constant and the vortex ring radius is com-
pletely determined by the underlying strain, we only need to
calculate the time evolution of the vortex core thicknessdv to
completely determine the dynamics of the vortex ring.

Thus, let us define the vortex core size as

dv
25

2p

G E
0

`

r 3v~r,t !dr. ~A1!

Then, the ratio of the characteristic viscous time,dv
2/n, to the

characteristic strain time,A0
21, defines the Reynolds number

of the vortex core

Rev5
dv

2A0

n
, ~A2!

which can also be viewed as the square of the nondimen-
sional vortex core size based on the characteristic viscous
length (n/A0)1/2.

For small Reynolds numbers the dynamics of the vortex
core will be dominated by viscosity, while for large Reynolds
numbers it will be essentially inviscid. However, in both
cases the size of the vortex core will tend to a constant value
of the order of (n/A0)1/2 as a result of the radial competition
between convection and diffusion.

In what follows, we consider a reference frame (x,y,z)
moving with the vortex core, wherex andy are the radial and
axial coordinates, andz represents the local azimutal coordi-
nate. As discussed in Sec. VII B, in this reference frame the
asymptotic velocity field at small distances from the vortex
core corresponds, in first approximation, to the superposition
of a three-dimensional stagnation point flow with velocity
gradientsA0/2 along thex andz axes and2A0 along they
axis, and a line vortex of strengthG located along thez axis.

In reality, however, the vorticity will be distributed over
a region of characteristic sizedv around thez axis. In the
present analysis we shall assume that the characteristic size
of the vorticity distribution is small compared with the char-
acteristic scale (G/A0)1/2 of the asymptotic structure of the
flow. Then, the vorticity is confined to a small core around
the origin, with

ReG5
vc

A0
Rev@Rev , ~A3!

where ReG5G/n is the Reynolds number based on the vortex
circulation, assumed here to be much larger than one, and
vc5G/dv

2 is the characteristic value of the vorticity in the
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core. As a consequence, the characteristic turnover timevc
21

will be small compared with the characteristic strain time
A0

21.
Thus we will seek a solution of the vorticity equation

]v

]t
1u•¹v5v•¹u1n¹2v, ~A4!

in which there is only az component of vorticity, assuming
that both the vorticity and the velocity induced by it are
independent ofz. Introducing cylindrical-polar coordinates
~r,u,z!, with x5r cosu andy5r sinu, we may write

uz5
A0

2
z, ~A5a!

ur5S 2
1

2
1

3

2
cos 2u D A0

2
r1ur8~r,u,t !, ~A5b!

uu5S 2
3

2
sin 2u D A0

2
r1uu8~r,u,t !, ~A5c!

where ur8 and uu8 represent the perturbation velocity field
induced by the vorticity distribution

v~r,u,t !5
1

r

]~ruu8!

]r
2

1

r

]ur8

]u
. ~A6!

Then, Eq.~A4! can be written as

]v

]t
1F S 2

1

2
1

3

2
cos 2u D A0

2
r1ur8G ]w

]r

1F S 2
3

2
sin 2u D A0

2
1

uu8

r G ]v

]u

5
A0

2
v1nF1

r

]

]r S r
]v

]r D1
1

r2

]2v

]u2 G ~A7!

to be integrated with the boundary conditionv→0 at r→`,
and regularity conditions atr50, while the continuity equa-
tion for the perturbation velocity field,ur8 anduu8 , adopts the
two-dimensional form

]rur8

]r
1

]uu8

]u
50, ~A8!

so that a stream functionc may be introduced, such thatv
52¹2c, with ur85(1/r)]c/]u, uu852]c/]r.

Introducing (n/A0)1/2, A0 , G/(n/A0)1/2, and A0G/n as
length, time, velocity and vorticity scales, respectively, Eq.
~A7! takes the nondimensional form

ur8
]w

]r
1

uu8

r

]w

]u
1

1

ReG
F]v

]t
1S 2

1

2
1

3

2
cos 2u D r

2

]w

]r

1S 2
3

2
sin 2u D 1

2

]v

]u G
5

1

ReG
Fw

2
1

1

r

]

]r S r
]v

]r D1
1

r2

]2v

]u2 G , ~A9!

wheret5A0t is the nondimensional time based onA0
21 and

for the rest of the variables we maintain the notation used in
the dimensional formulation.

In the limit ReG→`, the vorticity is strongly localized at
the origin, and~A9! is identically satisfied by any axisym-
metric distribution of vorticity, for which bothur8 and]v/]u
are identically zero. In this limit, whenuu85G/(2pr), the
velocity field ~A5! corresponds to the superposition of a
three-dimensional stagnation point flow with velocity gradi-
entsA0/2 along thex andz axis and2A0 along they axis,
and a line vortex of strengthG located along thez axis.

For ReG@1, the vorticity distribution is slightly non-
axisymmetric, and the radial velocityur8 and the azimuthal
derivative]v/]u are both of order ReG

21. Moreover, the con-
tinuity equation provides the estimate]uu8/]u;ur8 , which
suggests expanding the solution in powers of ReG

21 as

v~r,u,t !5v0~r,t !1ReG
21 v1~r,u,t !1¯, ~A10a!

ur8~r,u,t !5ReG
21 ur18 ~r,u,t !1¯, ~A10b!

uu8~r,u,t !5uu08 ~r,t !1ReG
21 uu18 ~r,u,t !1¯. ~A10c!

Introducing this expansion in Eq.~A9! and integrating
from u50 to 2p, we obtain the following equation for the
leading order vorticity distribution:

]v0

]t
2

r

4

]v0

]r
5

v0

2
1

1

r

]

]r S r
]v0

]r D . ~A11!

As shown by Lundgren,56 solutions to this equation may
be found from solutions of strictly two-dimensional flows
with the same initial conditions by means of the transforma-
tion

v0~r,t!5et/2VS et/4r,
et/221

1/2 D , ~A12!

where the functionV~r8,t8! satisfies the axisymmetric heat
equation

]V

]t8
5

1

r8

]

]r8 S r8
]V

]r8 D . ~A13!

However, it is well known that any axisymmetric vortex will
decay to Gaussian with time.57 Thus, in what follows we
shall restrict our attention to solutions of the form

V~r8,t8!5
1

pdV
2

expS 2
r82

dV
2 D , ~A14!

where the vorticityV has been scaled in order to adjust the
circulation of the vortex to its unitary nondimensional value
*0

`2pr8V(r8,t8)dr851.
Substituting~A14! into ~A13! we obtainddV

2 /dt854,
which can be integrated with the initial conditiondV

2 (0)
5d0

2 to givedV
2 5d0

214t8. Then, Eq.~A14! implies that the
amplitude of the vorticity distribution should decrease in-
versely with time, which guarantees that the vortex circula-
tion is constant.

According to Lundgren’s transformation, the leading or-
der vorticity distributionv0 will be given by
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v0~r,t!5
1

p

1

Rev
expS 2

r2

Rev
D , ~A15!

with Rev given by

Rev581~Rev028!e2t/2 ~A16!

in terms of its value Rev05dv0
2 A0 /n at t50. Note that for

Rev0,8 this equation predicts a vortex core radius which
shrinks to zero fort5t* 52 log(12Rev0/8),0.

The previous analysis shows that for large values of the
Reynolds number ReG , an approximately Gaussian and suf-
ficiently compact vortex will maintain its shape during its
evolution, decreasing or increasing its size depending on the
initial value of Rev as a result of the radial competition be-
tween convection and diffusion. In both cases, the nondimen-
sional vortex core size will tend to the constant value
dv /(n/A0)1/25Rev

1/2581/2.
Once the time evolution of the core size is known, the

self-induced velocity of the vortex ring is given by the ex-
pression

VI5
G

4pr c
S log

8r c

dv
20.558D , ~A17!

derived by Saffman58 for vortices with a Gaussian vorticity
core, such as~A15!.
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