We study the Price of Anarchy of mechanisms for the well-known problem of
one-sided matching, or house allocation, with respect to the social welfare
objective. We consider both ordinal mechanisms, where agents submit preference
lists over the items, and cardinal mechanisms, where agents may submit
numerical values for the items being allocated. We present a general lower
bound of Ω(n) on the Price of Anarchy, which applies to all
mechanisms. We show that two well-known mechanisms, Probabilistic Serial, and
Random Priority, achieve a matching upper bound. We extend our lower bound to
the Price of Stability of a large class of mechanisms that satisfy a common
proportionality property, and show stronger bounds on the Price of Anarchy of
all deterministic mechanisms