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Abstract

Robust preclinical test methods involving tribological simulations are required to investigate and

understand the tribological function of osteochondral repair interventions in natural knee

tissues.  The aim of this study was to investigate the effects of osteochondral allograft

implantation on the local tribology (friction, surface damage, wear and deformation) of the

tissues in the natural knee joint using a simple geometry, reciprocating pin-on-plate friction

simulator. In addition, the study aimed to assess the ability of osteochondral grafts to restore a

low surface damage, deformation and wear articulation when compared to the native state. A

method was developed to characterise and quantify surface damage wear and deformation of

the opposing cartilage-bone pin surface using a non-contacting optical profiler (Alicona Infinite

Focus).

Porcine 12 mm diameter cartilage-bone pins were reciprocated against bovine cartilage-bone

plates with 6 mm diameter osteochondral allografts, cartilage defects or stainless steel pins

(positive controls) inserted centrally. Increased levels of surface damage with changes in
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geometry were not associated with significant increases in the coefficient of dynamic friction.

Significant damage to the opposing cartilage surface was observed in the positive control

groups. Cartilage damage, deformation and wear (as measured by change in geometry) in the

xenograft (2.4 mm3) and cartilage defect (0.99 mm3) groups was low and not significantly

different (p>0.05) compared to the negative control in either group.

The study demonstrated the potential of osteochondral grafts to restore the congruent articular

surface and biphasic tribology of the natural joint. An optical method has been developed to

characterise cartilage wear, damage and deformation, that can be applied to the tribological

assessment of osteochondral grafts in a whole natural knee joint simulation model.

Keywords

Osteochondral Graft, Tribology, Natural Knee Joint, Friction Simulator, Friction, Wear,

Cartilage, Optical Profiler
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Introduction

A wide variety of surgical approaches for the repair of early stage osteochondral defects are

currently available [1]. These range from treatments that aim to stimulate the growth of fibrous

repair tissue (microfracture), to cell based approaches such as autologous chondrocyte

implantation, which aim to repair cartilage defects with a hyaline like cartilage tissue. The

transplantation of osteochondral autografts and allografts into the site of osteochondral defects

has also been used as a surgical approach for the repair of cartilage and underlying bone

defects in the knee since the early 1990’s [2] .

The main aim of osteochondral graft surgery is to reconstruct the natural articulating surface

and biphasic tribology of the joint, thereby restoring a low friction and wear articulation. In order

for them to be successful, osteochondral grafts must possess adequate mechanical and

tribological properties to withstand the complex loading environment within the natural knee, be

biomechanically stable and become integrated into the natural tissues over time. Furthermore,

the tribological properties of the graft, subsequent repair tissues and the resultant level of joint

congruency achieved, should not compromise the integrity of the surrounding and opposing

cartilage surfaces. Osteochondral grafting aims to repair the underlying supporting bone

structure and restore a near frictionless articulating surface; therefore, the tribological

performance of osteochondral grafts in the natural joint is a key factor in determining their

success in the short and long term.

The clinical application and outcome of osteochondral grafting is limited by a number of factors

including; defect size and tissue availability, donor site morbidity, recipient site congruity, graft

integration and fibrocartilage in-growth [3-5]. Tissue engineering of osteochondral scaffolds and

constructs has the potential to overcome the current limitations of osteochondral graft

(autologous and allogeneic) transplantation and provide a novel, early intervention repair

therapy with improved long term outcomes.

Simple geometry, pin-on-plate tribological test methods have commonly been used to study the

tribology of cartilage [6-10]; similarly, the use of these test methods has also been extended to

evaluate the tribology of potential cartilage biomaterials [11-15] and engineered cartilage

substitutes [16-20].  Small scale, in-vitro pin-on-plate test methods (whilst not replicating the
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geometry or complex motions of the natural knee) allow for the direct control of experimental

variables such as normal load, sliding distance and velocity, contact pressure and tissue

unloading intervals, that ultimately dictate the outputs under investigation [10]. Despite the long

standing clinical application of osteochondral grafts, there has been limited preclinical

evaluation of their tribological performance in the natural knee to date, in either simple geometry

or whole joint models [21, 22].

The overall aim of this study was to investigate the effects of osteochondral graft implantation

on the local tribology (friction, surface damage, wear and deformation) of the natural knee joint

using a simple geometry, reciprocating pin-on-plate animal tissue model. The objectives of this

study were to, (a) assess the ability of osteochondral grafts to restore low levels of cartilage

surface damage, wear and deformation (on the opposing surface) when compared to the native

state; (b) develop a method to quantify changes in surface geometry, as a measure of cartilage

surface damage and wear using an optical profiler (Alicona Infinite Focus).

The study represents the first published study investigating the tribology of xenografts (natural

cartilage-bone grafts) in a simple geometry tribological tissue model of the knee. In order to

develop novel tissue engineered scaffolds and constructs (such as regenerative early

intervention therapies in the knee), there is the requirement to understand their mechanical and

tribological function in the natural knee. Additionally, it is important to determine how the

complex range of variables in the knee joint as a biomechanical system, interact with the design

of the intervention to determine the resultant tribology. Robust preclinical test methods involving

tribological simulations, are therefore required to investigate and understand the tribological

function of osteochondral repair interventions in the tissues of the natural knee.  The study was

conducted as a preliminary, simple geometry tribological investigation to understand the effects

of osteochondral graft implantation on the tribology of the articulating surfaces in the knee and

to inform the development of a whole natural knee joint simulation model.

Materials

Osteochondral plates were harvested from the patella-femoral groove of skeletally mature (18

month old) bovine femurs; bovine femurs were used for the harvest of osteochondral plates
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since porcine femoral grooves were too small to harvest plates of the required dimensions for

testing. A hand saw and purposely designed jig were used to harvest flat rectangular plates

with dimensions 45 x 17 x 7 mm. Reciprocating cylindrical osteochondral pins, 12 mm in

diameter, were harvested from the weight bearing region of porcine (4 to 6 month old)  medial

femoral condyles using a drill aided corer.  The harvest location of the reciprocating pins

resulted in a slightly curved pin surface, representing a similar geometry to the whole femoral

condyle in the natural knee joint. Flat ended porcine osteochondral xenografts, 6 mm in

diameter, were harvested from the patella-femoral groove of porcine femurs using a drill aided

corer. The positive controls used in the tests were 6 mm diameter, cylindrical stainless steel

(type 316) pins (surface roughness (Ra) of 0.005 ± 0.001mm). In order to insert the 6 mm

diameter porcine xenografts or stainless steel control pins into the bovine osteochondral plates

a 6 mm recipient hole had to be drilled into the central region of the plate. The osteochondral

plate was then placed onto the base plate of the fixture such that a grub screw on the base

plate and the recipient hole in the osteochondral plate were aligned. The 6 mm graft (stainless

steel or porcine xenograft) was then push-fit into the recipient hole; the height of the grub screw

was then altered from the reverse side of the base plate until the graft sat either flush or 1 mm

proud of the cartilage surface. To create cartilage defects in the plates a 6 mm diameter biopsy

punch was used to insert a 6 mm cartilage defect into the centre of the osteochondral plates. A

biopsy punch was inserted into the cartilage down to the subchondral bone and used to core

out a circular disc of cartilage. The cartilage disc was then ejected from the biopsy punch by

depressing the release mechanism on the end of the punch. Tissue samples were kept

hydrated throughout the harvesting procedures using phosphate buffered saline (PBS; MP

Biomedicals LLC, UK) and stored until required for testing on PBS soaked tissue paper at -20

°C. PBS was prepared as per the manufacturers guidelines by dissolving one tablet per 100

mL of sterile water. Samples were removed from storage prior to testing and thawed at room

temperature.

Experimental Design

The experimental setup for all test groups consisted of a curved ended, 12 mm diameter porcine

osteochondral pin, reciprocating against a flat bovine osteochondral plate (Error! Reference

source not found. ).
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Figure 1 Images of the 12 mm diameter reciprocating pin (A); an
osteochondral plate with no graft / defects inserted (negative control
group) within the lubricant bath (B); Xenograft group (C); Cartilage

defect group (D); Positive control group 1 (stainless steel pins inserted
flush) (E); Positive control group 2 (stainless steel pins inserted 1 mm

proud) (F)

Each osteochondral plate and reciprocating pin pair were initially run as a negative control for

a duration of 3 hours (Error! Reference source not found. ). Following this, the specimens

were allowed to recover for 1 hour before either a 6 mm diameter xenograft, a cartilage defect

or a stainless steel pin was inserted in the centre of the osteochondral plate (Figure 1). The

negative controls consisted of an osteochondral plate with no pins, defects or interventions

inserted (native state; n=24). Test samples were then run as either a positive control or one of

the experimental groups for a further 3 hours.  Positive control groups consisted of stainless

steel pins inserted flush with the articular surface of the osteochondral plate (Positive Control

Group 1; n=6)  and 1 mm proud of the articular cartilage surface (Positive Control Group 2; n=6)

FE

C D

BA



8

(Figure 1).  A further two experimental groups were tested: Experimental Group 1) cartilage

defects inserted down to subchondral bone (n=6); Experimental Group 2) porcine xenografts

inserted flush with the articular cartilage surface (n=6). All experimental and control group tests

were performed in a lubricant of PBS + 25% (v/v) newborn calf serum (Gibco Life Technologies,

Paisley, UK) for a duration of 3 hours.

Methods

Simple Geometry Tribological Tests

A reciprocating motion, pin-on-plate friction rig was used for all tribological tests; a full

description of the friction rig is provided by Northwood, Fisher [23]. Reciprocating osteochondral

pins (12 mm diameter) were fixed in a static loaded pin holder with the cartilage surface

contacting the cartilage surface of the osteochondral plate. Osteochondral plates were secured

in a lubricant bath that was fixed to the reciprocating platen of the friction rig.  The frictional

force between the pin and plate samples was transmitted to a piezoelectric sensor; the

corresponding output voltage of the piezoelectric force sensor was relayed to a digital charge

amplifier and stored on a PC using a data acquisition unit.  Friction tests were performed using

a sliding velocity of 10 mm.s-1, a stroke length of 20 mm and applied load of 120 N; all tests

were performed in a lubricant of PBS + 25% (v/v) newborn calf serum (Gibco Life Technologies,

Paisley, UK) for a duration of 3 hours.

The output voltage of the piezoelectric sensor was used to calculate the dynamic friction

coefficient (ȝ) from the middle of the stroke using a known calibration factor; the piezoelectric

sensor was calibrated by applying a range of known forces (loads) to the pin holder in the

direction of motion of the reciprocating platen. A calibration curve was produced by plotting the

average voltage (V) readings against the cumulative load (N) applied and a linear trend line

fitted to the data. The gradient and y-intercept of the trend line were used to derive the dynamic

friction coefficient (ȝ) using Equation 1.
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Dynamic	Friction	Coefficient 	ሺɊ) =
ி௥௜௖௧௜௢௡	ி௢௥௖௘	(ே)஺௣௣௟௜௘ௗ	௅௢௔ௗ	(ே)

=

ቌ൬ఽ౬౛౨౗ౝ౛	౉౗౮౟ౣ౫ౣ	౒౥ౢ౪౗ౝ౛షఽ౬౛౨౗ౝ౛	౉౟౤౟ౣ౫ౣ	౒౥ౢ౪౗ౝ౛మ ൰షౕ	౅౤౪౛౨ౙ౛౦౪ృ౨౗ౚ౟౛౤౪	౥౜	ి౗ౢ౟ౘ౨౗౪౟౥౤ ቍ		
୐୭ୟୢ

Equation 1

The dynamic friction coefficient was recorded at 60 s intervals; for clarity, the data in Figure 1

is plotted at 10 min intervals as the mean ± 95% confidence limits.  The means of each paired

negative control and the associated experimental or positive control group were compared

using a paired students t-test at time intervals 60, 120 and 180 mins to determine any significant

difference (p=0.05) in coefficient of dynamic friction.

The relative change in coefficient of dynamic friction between each experimental group (FE) and

paired negative control (FC) was compared by calculating the change in friction (ǻF) using

Equation 2.

οܨ = ாܨ െ	 ஼ܨ 	
Equation 2

Assessment and Quantification of Articular Cartilage Surface Damage,
Wear and Deformation

The surface geometry of the opposing articular cartilage surface (reciprocating osteochondral

pin) to the insertion site of the grafts, defects or stainless steel pins was assessed and quantified

using an Alicona Infinite Focus G5 optical 3D micro coordinate and surface roughness

measurement device. Following each experimental and control group test, the surfaces of the

reciprocating pins were replicated using Microset 101 RF (Microset Products Ltd, UK) high

resolution silicone replicating compound. The opposing cartilage surface replicas were scanned

on the Alicona Infinite Focus using a x10 objective, 358 nm vertical resolution and 7.54 µm

lateral resolution (contrast and exposure settings were optimised as appropriate per sample) to

produce 3D image datasets (3D reconstructions of the original sample surface).
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Surface damage, wear and deformation was quantified using the Alicona Infinite Focus by

measuring changes in the geometry of the cartilage surface (change in volume extending

beneath the cartilage surface). The change in volume (mm3) extending below the articular

cartilage surface was used as a measure of cartilage surface damage, wear and deformation

occurring during the pin-on-plate tests (it was not possible to assume that changes in surface

geometry were solely due to wear arising from removal of material / tissue, changes in surface

geometry may also have been attributable to tissue deformation or damage without the loss of

material). The volume (mm3; below cartilage surface level) and depth of damage, wear and

deformation were measured from the 3D image datasets, using the analysis software IF

Measure Suite Version 5.1 (Alicona, Austria). All volume calculations were performed using a

Top Cover filter within the analysis software.

A group of 6 negative control specimens were analysed using the Alicona Infinite Focus to

determine any subsequent changes in the surface geometry during the negative control tests.

The volume extending below the sample surface was quantified for a sample area of 30 mm3

(25 % reciprocating pin surface area) for each pin and compared between the native state

(untested specimen) and following the negative control test.

The mean volume (mm3) extending below the surface of the negative control samples (0.1 mm3)

was used as a baseline for statistical comparison (independent samples t-test; p=0.05) with the

experimental and positive control groups to determine any significant changes in the cartilage

surface geometry. One way analysis of variance (ANOVA) was used to compare the mean

depth of surface damage, wear and deformation observed between the positive control,

xenograft and cartilage defects groups at the p=0.05 significance level.

The dataset associated with this article is openly available from the University of Leeds Data

Repository [24].
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Results

Dynamic Friction

Figure 1: Mean coefficient of dynamic friction plotted at 10 min time intervals (mean ±

95% confidence limits; n=6 per group).

The negative control samples maintained a low constant coefficient of dynamic friction (0.049

± 0.007) throughout the test duration following a small initial decrease during the first 10 mins

Figure 1). No significant differences (p>0.05; paired t-test) in dynamic friction were recorded

between the negative controls and any of their paired experimental or positive control group

tests at any time point analysed (60, 120 and 180 mins).

The mean change in the coefficient of dynamic friction between the negative control groups

and their paired experimental or positive control group is presented in Figure 2. A positive

increase in dynamic friction was recorded for positive control groups 1 (stainless steel pins

inserted flush) and 2 (stainless steel pins inserted 1 mm proud) at time points 60, 120 and 180

mins when compared to the paired negative control tests. Positive control group 2 exhibited the

greatest overall change in recorded friction across all groups. The mean coefficient of friction

for the cartilage defect and xenograft groups was lower than the negative controls; the largest
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decrease in coefficient of dynamic friction was recorded in the cartilage defect group at 180

mins (- 0.019).

Figure 2: Mean change in coefficient of dynamic friction between the negative control

tests and each paired experimental or positive control group test at 60, 120 and 180

mins (n=6 per group). Change in dynamic friction ( ǻF) calculated as experimental

friction (F E) minus negative control friction (F C).

Articular Cartilage Surface Damage, Wear and Deformation

Visual inspection of the negative control 3D images, indicated that there were no apparent

changes in the cartilage surface geometry when compared to the untested samples. No

significant difference (p=0.538 paired t-test) was present in the volume extending below the

cartilage surface (a measure of damage, wear and deformation) between the untested (0.15

mm3) and negative control test samples (0.098 mm3), indicating cartilage surface damage and

wear was not present.

Positive control groups 1 and 2 sustained severe cartilage damage, wear and deformation as

shown in Figure 3.  Damage, wear and deformation in the positive control groups generally
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consisted of large, steep flanked cartilage lesions stretching across the diameter of the pin

surface, accompanied by multiple deep scratches on the surrounding cartilage surface. The

mean volume of cartilage damage and wear in positive control group 1 and 2 was significantly

greater (p=0.021 and p=0.042; independent t-test) than the negative controls, at 15.3 mm3 and

37.1 mm3 respectively (Figure 4).

Figure 3: Example Alicona Infinite Focus scan images of the reciprocating 12mm

diameter pin surface with arrows indicating sliding direction. A) Cartilage Defect

Group; B) Xenograft Group; C) Positive Control Group 1 (Stainless Steel Pins Flush);

D) Proud Positive Control Group 2 (Stainless Steel Pins 1 mm).

A

C D

B
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The cartilage defect group had the smallest mean volume of damage, wear and deformation at

0.99 mm3, similarly the volume of the xenograft group was also low at 2.4 mm3. No significant

difference (p>0.05) was present between the negative control group (0.098 mm3) and both the

cartilage defect (p=0.162; independent t-test) and xenograft (p=0.188; independent t-test)

groups. Damage, wear and deformation in the cartilage defect and xenograft groups consisted

of visible areas of increased surface roughness, scratches in the central region of the pin

surface orientated parallel with the direction of translation, and/or small, shallow cartilage

lesions with irregular boundaries (Figure 3).

Figure 4: Mean volume (mm 3; volume extending beneath cartilage surface) of articular

cartilage surface damage, wear and deformation (mean ± 95% confidence intervals;

n=6 per group) measured using the Alicona Infinite Focus.

The cartilage defect and xenograft groups had the smallest penetration depths of damage and

wear at  mean depths of 0.11 mm and 0.21 mm respectively (Figure 5); the group means were

not significantly different (p=0.986; ANOVA).  Positive control group 2 had the largest mean

depth of damage, wear and deformation at 1.22 mm and this was significantly greater (p<0.05;

ANOVA) than the cartilage defect and xenograft groups (Figure 5). Positive control group 1 also
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had a greater mean depth (0.49 mm) of damage, wear and deformation than the cartilage defect

and xenograft groups, however, these differences were not significant (p>0.05; ANOVA).

Figure 5: Mean penetration depth of articular cartilage surface damage, wear and

deformation (mean ± 95% confidence intervals; n=6 per group) measured using the

Alicona Infinite Focus.

Discussion

This study is the first to investigate the effects of cartilage defects and the implantation of

osteochondral grafts on the local tribology. The constant low coefficient of dynamic friction

(0.049 ± 0.007) demonstrated by the negative control group was similar to values reported in

previous studies [7, 13, 14, 25, 26]. The constant low coefficient of friction and the absence of

surface damage and wear in the negative control group, highlights the biphasic behaviour of

cartilage and its intrinsic ability to maintain interstitial fluid load support and therefore, a low

friction and wear articulation. The reciprocating motion of the articular cartilage plate promoted
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the maintenance of biphasic fluid load support by allowing for interstitial fluid rehydration during

the unloaded phase of the cycle [8].

Overall, there were no significant differences in dynamic friction (p>0.05, paired t-test) between

the negative controls and the paired experimental or positive control group tests (Figure 1);

furthermore, increased levels of articular cartilage surface damage and wear were not

associated with significant increases in the coefficient of dynamic friction. The positive control

groups exhibited the highest levels of friction, with a small increase in the coefficient of friction

observed between 60 and 180 mins (Figure 2). The cartilage defect and xenograft groups

demonstrated a lower mean coefficient of friction in comparison to the negative controls, with

the greatest decrease in frictional coefficient (- 0.019)  recorded in the cartilage defect group at

180 mins. The lower levels of friction recorded in the cartilage defect group were likely

attributable to a reduction of contact area and increased fluid volume in the articulation, resulting

in increased fluid load support of the applied load.  These factors were also likely to have

contributed to the low level of cartilage damage, wear and deformation (0.99 mm3) measured

in the cartilage defect group (Figure 4).

The xenograft group displayed a low level of overall damage, wear and deformation at 2.4 mm3;

general patterns in the damage and wear observed, included areas of surface roughness,

scratching or small shallow cartilage lesions (mean depth 0.2 mm); similar patterns were also

noted for the cartilage defect group (Figure 3). There were no significant differences (p>0.05)

in the volume of damage and wear (volume extending below the cartilage surface) when

compared to the negative control (0.1 mm3). Overall, the mean volume of cartilage damage and

wear measured for the xenograft group was low, indicating that following implantation,

osteochondral grafts have the potential to restore a congruent articular surface and some

degree of biphasic lubrication, resulting in a low friction articulation with low levels of resultant

damage, wear and deformation. The insertion of osteochondral grafts into the natural contour

of the osteochondral plates, introduces a discontinuous articulating surface at the

circumference of the grafts and defects. The translation of the reciprocating pin over the

boundary region between the plates and grafts was believed to have been responsible for the

damage, wear and deformation sustained in the xenograft group due to the presence of edge

effects.
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The majority of samples (n=4) within the xenograft group had low levels of damage, wear and

deformation at a mean volume of 0.13 mm3, predominately consisting of areas of noticeable

surface roughness and scratching. In contrast, two samples within the group had a mean

volume of 5.8 mm3, consisting of small isolated cartilage lesions. The difference in the volume

and pattern of damage, wear and deformation was thought to be attributable to misalignment

of the osteochondral grafts, resulting in protruding grafts that were subject to disproportionate

loading in comparison with other samples in the group. The insertion of stainless steel pins 1

mm proud (positive control group 2) resulted in cartilage damage, wear and deformation of

greater mean volume and depth when compared with stainless steel grafts inserted flush

(positive control group 1). The large confidence interval range (Figure 4 & Figure 5) within

positive control group 2 was attributable to one sample with a wear volume of 93 mm3. The

surface area of the lesion was comparable to the group average, however the depth was

significantly greater (2.7 mm). The larger volume of cartilage damage, wear and deformation

recorded for this sample was likely attributable to misalignment of the stainless steel pin,

resulting in a protrusion greater than 1 mm above the cartilage surface.

The simple geometry pin-on-plate model used in this study was confined to unidirectional sliding

motion and constant loading of the reciprocating pin. Combined rolling and sliding motions of

the femoral condyles in the natural knee result in dynamic loading on both articular surfaces

within the tibiofemoral joint; the reciprocating pin in contrast to the whole joint, is a small

discontinuous surface that is constantly loaded. The experimental geometry used within this

study, is thought to increase the rate of fluid loss away from the contact zone and reduce

intrinsic fluid load support when compared to the natural tibiofemoral joint. The continuous

loading of the reciprocating pin (opposing cartilage surface to graft / defect site) and the

associated reduction in fluid load support, essentially creates a worst case scenario when

investigating the effects on friction, damage and wear associated with the presence of

osteochondral grafts and cartilage defects.

The study presented a method for the assessment and characterisation of articular cartilage

damage and wear using focus variation technology (Alicona Infinite Focus). The Alicona Infinite

focus facilitated detailed 3D visual characterisation and quantitative assessment of changes in

cartilage surface topography using one integrated system.  The evaluation of cartilage damage,
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wear and deformation in previous simple geometry tribological studies has been mainly limited

to the use of contacting stylus and laser surface profilometry, assessing changes in parameters

such as surface roughness (Ra) [9, 13, 14, 26-28].  The nature of surface profilometry methods

such as contacting surface profilometry, require that additional techniques such as scanning

electron microscopy and micro MRI be utilised in order to image and visually assess cartilage

wear, damage and deformation [9, 27, 28].

Future work will focus on the development of a preclinical whole joint knee simulation model for

the tribological assessment of osteochondral grafts and scaffolds as potential early

interventions for the repair of osteochondral defects; cartilage wear, damage and deformation

will be characterised and quantified using the optical method developed within this study.

Conclusion

The study demonstrated the potential for osteochondral grafts to restore the congruent articular

surface and biphasic tribology of the natural joint without introducing significant changes in

friction, damage and wear when compared to the native state. The results and knowledge

gained from simple geometry tribological tests can be used to inform the development of robust

and stratified whole joint simulation models; furthermore, the results may act as a useful

baseline to which the outcomes of whole joint simulation tests can be compared.
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