925 research outputs found
Metastability of non-reversible mean-field Potts model with three spins
We examine a non-reversible, mean-field Potts model with three spins on a set
with points. Without an external field, there are three
critical temperatures and five different metastable regimes. The analysis can
be extended by a perturbative argument to the case of small external fields. We
illustrate the case of large external fields with some phenomena which are not
present in the absence of external field.Comment: 34 pages, 12 figure
Magnetism and half-metallicity at the O surfaces of ceramic oxides
The occurence of spin-polarization at ZrO, AlO and MgO
surfaces is proved by means of \textit{ab-initio} calculations within the
density functional theory. Large spin moments, as high as 1.56 , develop
at O-ended polar terminations, transforming the non-magnetic insulator into a
half-metal. The magnetic moments mainly reside in the surface oxygen atoms and
their origin is related to the existence of holes of well-defined spin
polarization at the valence band of the ionic oxide. The direct relation
between magnetization and local loss of donor charge makes possible to extend
the magnetization mechanism beyond surface properties
Compositional analysis of InAs-GaAs-GaSb heterostructures by low-loss electron energy loss spectroscopy
As an alternative to Core-Loss Electron Energy Loss Spectroscopy, Low-Loss EELS is suitable for compositional analysis of complex heterostructures, such as the InAs-GaAs-GaSb system, since in this energy range the edges corresponding to these elements are better defined than in Core-Loss. Furthermore, the analysis of the bulk plasmon peak, which is present in this energy range, also provides information about the composition. In this work, compositional information in an InAs-GaAs-GaSb heterostructure has been obtained from Low-Loss EEL spectra
Background studies and shielding effects for the TPC detector of the CAST experiment
Sunset solar axions traversing the intense magnetic field of the CERN Axion
Solar Telescope (CAST) experiment may be detected in a Time Projection Chamber
(TPC) detector, as X-rays signals. These signals could be masked, however, by
the inhomogeneous background of materials in the experimental site. A detailed
analysis, based on the detector characteristics, the background radiation at
the CAST site, simulations and experimental results, has allowed us to design a
shielding which reduces the background level by a factor of ~4 compared to the
detector without shielding, depending on its position, in the energy range
between 1 and 10 keV. Moreover, this shielding has improved the homogeneity of
background measured by the TPC.Comment: 14 pages, 5 figures, accepted in New Journal of Physic
Non-adiabatic effects during the dissociative adsorption of O2 at Ag(111)? A first-principles divide and conquer study
We study the gas-surface dynamics of O2 at Ag(111) with the particular
objective to unravel whether electronic non-adiabatic effects are contributing
to the experimentally established inertness of the surface with respect to
oxygen uptake. We employ a first-principles divide and conquer approach based
on an extensive density-functional theory mapping of the adiabatic potential
energy surface (PES) along the six O2 molecular degrees of freedom. Neural
networks are subsequently used to interpolate this grid data to a continuous
representation. The low computational cost with which forces are available from
this PES representation allows then for a sufficiently large number of
molecular dynamics trajectories to quantitatively determine the very low
initial dissociative sticking coefficient at this surface. Already these
adiabatic calculations yield dissociation probabilities close to the scattered
experimental data. Our analysis shows that this low reactivity is governed by
large energy barriers in excess of 1.1 eV very close to the surface.
Unfortunately, these adiabatic PES characteristics render the dissociative
sticking a rather insensitive quantity with respect to a potential spin or
charge non-adiabaticity in the O2-Ag(111) interaction. We correspondingly
attribute the remaining deviations between the computed and measured
dissociation probabilities primarily to unresolved experimental issues with
respect to surface imperfections.Comment: 18 pages including 6 figure
Chirality in Bare and Passivated Gold Nanoclusters
Chiral structures have been found as the lowest-energy isomers of bare
(Au and Au_{28}(SCH_{16}_{38}(SCH_{3})_{24}) gold nanoclusters. The degree of chirality existing in
the chiral clusters was calculated using the Hausdorff chirality measure. We
found that the index of chirality is higher in the passivated clusters and
decreases with the cluster size. These results are consistent with the observed
chiroptical activity recently reported for glutahione-passivated gold
nanoclusters, and provide theoretical support for the existence of chirality in
these novel compounds.Comment: 5 pages, 1 figure. Submitted to PR
Do Thiols Merely Passivate Gold Nanoclusters?
A Comment on the Letter by H. Hakkinen, R. N. Barnett, and U. Landman, Phys. Rev. Lett. 82, 3264 (1999)
Characterization of the spoilage microbiota of hake fillets packaged under a modified atmosphere (MAP) rich in CO2 (50% CO2/50% N2) and stored at different temperatures
The aim of this study was to characterize the spoilage microbiota of hake fillets stored under modified atmospheres (MAP) (50% CO2/50% N2) at different temperatures using high-throughput 16S rRNA gene sequencing and to compare the results with those obtained using traditional microbiology techniques. The results obtained indicate that, as expected, higher storage temperatures lead to shorter shelf-lives (the time of sensory rejection by panelists). Thus, the shelf-life decreased from six days to two days for Batch A when the storage temperature increased from 1 to 7 °C, and from five to two days—when the same increase in storage temperature was compared—for Batch B. In all cases, the trimethylamine (TMA) levels measured at the time of sensory rejection of hake fillets exceeded the recommended threshold of 5 mg/100 g. Photobacterium and Psychrobacter were the most abundant genera at the time of spoilage in all but one of the samples analyzed: Thus, Photobacterium represented between 19% and 46%, and Psychrobacter between 27% and 38% of the total microbiota. They were followed by Moritella, Carnobacterium, Shewanella, and Vibrio, whose relative order varied depending on the sample/batch analyzed. These results highlight the relevance of Photobacterium as a spoiler of hake stored in atmospheres rich in CO2. Further research will be required to elucidate if other microorganisms, such as Psychrobacter, Moritella, or Carnobacterium, also contribute to spoilage of hake when stored under MAP
- …