211 research outputs found

    The Arizona Radio Observatory CO Mapping Survey of Galactic Molecular Clouds: III. The Serpens Cloud in CO J=2-1 and 13CO J=2-1 Emission

    Full text link
    We mapped 12CO and 13CO J = 2-1 emission over 1.04 square deg of the Serpens molecular cloud with 38 arcsec spatial and 0.3 km/s spectral resolution using the Arizona Radio Observatory Heinrich Hertz Submillimeter telescope. Our maps resolve kinematic properties for the entire Serpens cloud. We also compare our velocity moment maps with known positions of Young Stellar Objects (YSOs) and 1.1 mm continuum emission. We find that 12CO is self-absorbed and 13CO is optically thick in the Serpens core. Outside of the Serpens core, gas appears in filamentary structures having LSR velocities which are blue-shifted by up to 2 km/s relative to the 8 km/s systemic velocity of the Serpens cloud. We show that the known Class I, Flat, and Class II YSOs in the Serpens core most likely formed at the same spatial location and have since drifted apart. The spatial and velocity structure of the 12CO line ratios implies that a detailed 3-dimensional radiative transfer model of the cloud will be necessary for full interpretation of our spectral data. The starless cores region of the cloud is likely to be the next site of star formation in Serpens.Comment: 41 pages, 15 figure

    The abundance of HCN in circumstellar envelopes of AGB stars of different chemical types

    Full text link
    A multi-transition survey of HCN (sub-) millimeter line emission from a large sample of AGB stars of different chemical type is presented. The data are analysed and circumstellar HCN abundances are estimated. The sample stars span a large range of properties such as mass-loss rate and photospheric C/O-ratio. The analysis of the new data allows for more accurate estimates of the circumstellar HCN abundances and puts new constraints on chemical models. In order to constrain the circumstellar HCN abundance distribution a detailed non-LTE excitation analysis, based on the Monte Carlo method, is performed. Effects of line overlaps and radiative excitation from dust grains are included. The median values for the derived abundances of HCN (with respect to H2) are 3x10-5, 7x10-7 and 10-7 for carbon stars (25 stars), S-type AGB stars (19 stars) and M-type AGB stars (25 stars), respectively. The estimated sizes of the HCN envelopes are similar to those obtained in the case of SiO for the same sample of sources and agree well with previous results from interferometric observations, when these are available. We find that there is a clear dependence of the derived circumstellar HCN abundance on the C/O-ratio of the star, in that carbon stars have about two orders of magnitude higher abundances than M-type AGB stars, on average. The derived HCN abundances of the S-type AGB stars have a larger spread and typically fall in between those of the two other types, however, slightly closer to the values for the M-type AGB stars. For the M-type stars, the estimated abundances are much higher than what would be expected if HCN is formed in thermal equilibrium. However, the results are also in contrast to predictions from recent non-LTE chemical models, where very little difference is expected in the HCN abundances between the various types of AGB stars.Comment: Accepted for publication in A&

    Star formation in the S233 region

    Full text link
    The main objective of this paper is to study the possibility of triggered star formation on the border of the HII region S233, which is formed by a B-star. Using high-resolution spectra we determine the spectral class of the ionizing star as B0.5 V and the radial velocity of the star to be -17.5(1.4) km/s. This value is consistent with the velocity of gas in a wide field across the S233 region, suggesting that the ionizing star was formed from a parent cloud belonging to the S233 region. By studying spatial-kinematic structure of the molecular cloud in the S233 region, we detected an isolated clump of gas producing CO emission red-shifted relative to the parent cloud. In the UKIDSS and WISE images, the clump of gas coincides with the infrared source containing a compact object and bright-rimmed structure. The bright-rimmed structure is perpendicular to the direction of the ionizing star. The compact source coincides in position with IRAS source 05351+3549. All these features indicate a possibility of triggering formation of a next-generation star in the S233 region. Within the framework of a theoretical one-dimensional model we conclude that the "collect-and-collapse" process is not likely to take place in the S233 region. The presence of the bright-rimmed structure and the compact infrared source suggest that the "collapse of the pre-existing clump" process is taking place.Comment: 12 pages, 10 figure

    Star formation in W3 - AFGL333: Young stellar content, properties and roles of external feedback

    Full text link
    One of the key questions in the field of star formation is the role of stellar feedback on subsequent star formation process. The W3 giant molecular cloud complex at the western border of the W4 super bubble is thought to be influenced by the stellar winds of the massive stars in W4. AFGL333 is a ~10^4 Msun cloud within W3. This paper presents a study of the star formation activity within AFGL333 using deep JHKs photometry obtained from the NOAO Extremely Wide-Field Infrared Imager combined with Spitzer-IRAC-MIPS photometry. Based on the infrared excess, we identify 812 candidate young stellar objects in the complex, of which 99 are classified as Class I and 713 are classified as Class II sources. The stellar density analysis of young stellar objects reveals three major stellar aggregates within AFGL333, named here AFGL333-main, AFGL333-NW1 and AFGL333-NW2. The disk fraction within AFGL333 is estimated to be ~50-60%. We use the extinction map made from the H-Ks colors of the background stars to understand the cloud structure and to estimate the cloud mass. The CO-derived extinction map corroborates the cloud structure and mass estimates from NIR color method. From the stellar mass and cloud mass associated with AFGL333, we infer that the region is currently forming stars with an efficiency of ~4.5% and at a rate of ~2 - 3 Msun Myr-1pc-2. In general, the star formation activity within AFGL333 is comparable to that of nearby low mass star-forming regions. We do not find any strong evidence to suggest that the stellar feedback from the massive stars of nearby W4 super bubble has affected the global star formation properties of the AFGL333 region.Comment: 17 pages, 9 figures, Accepted for publication in Ap

    Observational Constraints on Submillimeter Dust Opacity

    Get PDF
    Infrared extinction maps and submillimeter dust continuum maps are powerful probes of the density structure in the envelope of star-forming cores. We make a direct comparison between infrared and submillimeter dust continuum observations of the low-mass Class 0 core, B335, to constrain the ratio of submillimeter to infrared opacity (κ_(smm)/κ_(ir)) and the submillimeter opacity power-law index (κ ∝ λ–β). Using the average value of theoretical dust opacity models at 2.2 μm, we constrain the dust opacity at 850 and 450 μm. Using new dust continuum models based upon the broken power-law density structure derived from interferometric observations of B335 and the infall model derived from molecular line observations of B335, we find that the opacity ratios are ^κ_(850)_κ_(2.2) = (3.21 - 4.80)^(+0.44)_(-0.30) x 10^(-4) ^κ_(450)_κ(2.0) = (12.8-24.8)^(+2.4)_(-1.3) x 10^(-4) with a submillimeter opacity power-law index of β_(smm) = (2.18-2.58)^(+0.30)_(–0.30). The range of quoted values is determined from the uncertainty in the physical model for B335. For an average 2.2 μm opacity of 3800 ± 700 cm^2 g^(–1), we find a dust opacity at 850 and 450 μm of κ_(850) = (1.18-1.77)^9+0.36)_(–0.24) and κ_(450) = (4.72-9.13)^(+1.9)_(–0.98) cm^2 g^(–1) of dust. These opacities are from (0.65-0.97)κ^(OH5)_(850) of the widely used theoretical opacities of Ossenkopf and Henning for coagulated ice grains with thin mantles at 850 μm

    First interferometric observations with arc-sec. resolution of solar radio bursts at millimeter wavelengths

    Get PDF
    The Berkeley-Maryland-Illinois Array (BIMA) is briefly described in the context of solar observations. Specific areas of research that could be performed using BIMA during the Solar Maximum Mission (SMM) in 1991 are outlined. Some preliminary results of flare observations during March 1989 are presented

    Gas-phase CO depletion and N2H+ abundances in starless cores

    Get PDF
    Seven isolated, nearby low-mass starless molecular cloud cores have been observed as part of the Herschel key program Earliest Phases of Star formation (EPoS). By applying a ray-tracing technique to the obtained continuum emission and complementary (sub)mm emission maps, we derive the physical structure (density, dust temperature) of these cloud cores. We present observations of the 12CO, 13CO, and C18O (2-1) and N2H+ (1-0) transitions towards the same cores. Based on the density and temperature profiles, we apply time-dependent chemical and line-radiative transfer modeling and compare the modeled to the observed molecular emission profiles. CO is frozen onto the grains in the center of all cores in our sample. The level of CO depletion increases with hydrogen density and ranges from 46% up to more than 95% in the core centers in the core centers in the three cores with the highest hydrogen density. The average hydrogen density at which 50% of CO is frozen onto the grains is 1.1+-0.4 10^5 cm^-3. At about this density, the cores typically have the highest relative abundance of N2H+. The cores with higher central densities show depletion of N2H+ at levels of 13% to 55%. The chemical ages for the individual species are on average 2+-1 10^5 yr for 13CO, 6+-3 10^4 yr for C18O, and 9+-2 10^4 yr for N2H+. Chemical modeling indirectly suggests that the gas and dust temperatures decouple in the envelopes and that the dust grains are not yet significantly coagulated. We observationally confirm chemical models of CO-freezeout and nitrogen chemistry. We find clear correlations between the hydrogen density and CO depletion and the emergence of N2H+. The chemical ages indicate a core lifetime of less than 1 Myr.Comment: 24 pages, 25 figures, Accepted for publication in Astronomy and Astrophysic

    Molecular Gas in Candidate Double Barred Galaxies III. A Lack of Molecular Gas?

    Full text link
    Most models of double-barred galaxies suggest that a molecular gas component is crucial for maintaining long-lived nuclear bars. We have undertaken a CO survey in an attempt to determine the gas content of these systems and to locate double barred galaxies with strong CO emission that could be candidates for high resolution mapping. We observed 10 galaxies in CO J=2-1 and J=3-2 and did not detect any galaxies that had not already been detected in previous CO surveys. We preferentially detect emission from galaxies containing some form of nuclear activity. Simulations of these galaxies require that they contain 2% to 10% gas by mass in order to maintain long-lived nuclear bars. The fluxes for the galaxies for which we have detections suggest that the gas mass fraction is in agreement with these models requirements. The lack of emission in the other galaxies suggests that they contain as little as 7 x 10^6 solar masses of molecular material which corresponds to < 0.1% gas by mass. This result combined with the wide variety of CO distributions observed in double barred galaxies suggests the need for models of double-barred galaxies that do not require a large, well ordered molecular gas component.Comment: 17 pages (3 figures embedded on pg 17). To appear in the March 10 issue of the Astrophysical Journa

    The distribution of H13CN in the circumstellar envelope around IRC+10216

    Full text link
    H13CN J=8-7 sub-millimetre line emission produced in the circumstellar envelope around the extreme carbon star IRC+10216 has been imaged at sub-arcsecond angular resolution using the SMA. Supplemented by a detailed excitation analysis the average fractional abundance of H13CN in the inner wind (< 5E15 cm) is estimated to be about 4E-7, translating into a total HCN fractional abundance of 2E-5 using the isotopic ratio 12C/13C=50. Multi-transitional single-dish observations further requires the H13CN fractional abundance to remain more or less constant in the envelope out to a radius of about 4E16 cm, where the HCN molecules are effectively destroyed, most probably, by photodissociation. The large amount of HCN present in the inner wind provides effective line cooling that can dominate over that generated from CO line emission. It is also shown that great care needs to be taken in the radiative transfer modelling where non-local, and non-LTE, effects are important and where the radiation field from thermal dust grains plays a major role in exciting the HCN molecules. The amount of HCN present in the circumstellar envelope around IRC+10216 is consistent with predicted photospheric values based on equilibrium chemical models and indicates that any non-equilibrium chemistry occurring in the extended pulsating atmosphere has no drastic net effect on the fractional abundance of HCN molecules that enters the outer envelope. It further suggests that few HCN molecules are incorporated into dust grains.Comment: Accepted for publication in ApJ. 20 pages, 7 figure

    The abundance of SiS in circumstellar envelopes around AGB stars

    Full text link
    New SiS multi-transition (sub-)millimetre line observations of a sample of AGB stars with varying photospheric C/O-ratios and mass-loss rates are presented. A combination of low- and high-energy lines are important in constraining the circumstellar distribution of SiS molecules. A detailed radiative transfer modelling of the observed SiS line emission is performed, including the effect of thermal dust grains in the excitation analysis. We find that the circumstellar fractional abundance of SiS in these environments has a strong dependence on the photospheric C/O-ratio as expected from chemical models. The carbon stars (C/O>1) have a mean fractional abundance of 3.1E-6, about an order of magnitude higher than found for the M-type AGB stars (C/O<1) where the mean value is 2.7E-7. These numbers are in reasonable agreement with photospheric LTE chemical models. SiS appears to behave similar to SiO in terms of photodissociation in the outer part of the circumstellar envelope. In contrast to previous results for the related molecule SiO, there is no strong correlation of the fractional abundance with density in the CSE, as would be the case if freeze-out onto dust grains were important. However, possible time-variability of the line emission in the lower J transitions and the sensitivity of the line emission to abundance gradients in the inner part of the CSE may mask a correlation with the density of the wind. There are indications that the SiS fractional abundance could be significantly higher closer to the star which, at least in the case of M-type AGB stars, would require non-equilibrium chemical processes.Comment: Accepted for publication in A&A (14 pages, 7 figures
    corecore