2,378 research outputs found

    High-cadence spectroscopy of M-dwarfs – II. Searching for stellar pulsations with HARPS

    Get PDF
    Stellar oscillations appear all across the Hertzsprung–Russell diagram. Recent theoretical studies support their existence also in the atmosphere of M dwarfs. These studies predict for them short periodicities ranging from 20 min to 3 h. Our Cool Tiny Beats (CTB) programme aims at finding these oscillations for the very first time. With this goal, CTB explores the short time domain of M dwarfs using radial velocity data from the High Accuracy Radial velocity Planet Searcher (HARPS)-European Southern Observatory and HARPS-N high-precision spectrographs. Here we present the results for the two most long-term stable targets observed to date with CTB, GJ 588 and GJ 699 (i.e. Barnard's star). In the first part of this work we detail the correction of several instrumental effects. These corrections are especially relevant when searching for subnight signals. Results show no significant signals in the range where M dwarfs pulsations were predicted. However, we estimate that stellar pulsations with amplitudes larger than ∼0.5 m s−1 can be detected with a 90 per cent completeness with our observations. This result, along with the excess of power regions detected in the periodograms, opens the possibility of non-resolved very low amplitude pulsation signals. Next generation more precise instrumentation would be required to detect such oscillations. However, the possibility of detecting pulsating M-dwarf stars with larger amplitudes is feasible due to the short size of the analysed sample. This motivates the need for completeness of the CTB survey

    From Object Detection to Room Categorization in Robotics

    Get PDF
    This article deals with the problem of room categorization, i.e. the classification of a room as being a bathroom, kitchen, living-room, bedroom, etc., by an autonomous robot operating in home environments. For that, we propose a room categorization system based on a Bayesian probabilistic framework that combines object detections and its semantics. For detecting objects we resort to a state-of-the-art CNN, Mask R-CNN, while the meaning or semantics of those detections is provided by an ontology. Such an ontology encodes the relations between object and room categories, that is, in which room types the different object categories are typically found (toilets in bathrooms, microwaves in kitchens, etc.). The Bayesian framework is in charge of fusing both sources of information and providing a probability distribution over the set of categories the room can belong to. The proposed system has been evaluated in houses from the Robot@Home dataset, validating its effectiveness under real-world conditions.</p

    Efectos del entrenamiento de fuerza integrado dos veces por semana en jóvenes

    Full text link
    La aptitud física es uno de los factores más importante para prevenir las enfermedades cardiovasculares La fuerza es uno de los componentes más influyentes sobre la aptitud física. Objetivo: Se estudió un grupo de 21 varones (V) y 11 mujeres (M) jóvenes, al cual se aplicó un programa de entrenamiento de fuerza integrado durante 7 semanas, con una frecuencia de 2 días semanales. Método: Se evaluó la fuerza máxima a través de una repetición máxima (1RM) en los ejercicios de press de banca (PB) y ¿ sentadilla (SEN). El entrenamiento consistió en aplicar intensidades del 45 al 90% y volúmenes de 10 a 18 repeticiones por ejercicio, saltos y pliometría. Resultados: Se encontraron diferencias significativas p< 0.01 pre y post entrenamiento, PB en V 57.9 + 7.2 vs 65 + 8.2 Kg; SEN en V 84.1 + 15.3 vs 101.1 + 16.1 Kg; PB en M 38.5 + 8.6 vs 47.4 + 6.7 Kg SEN en M 61.8 + 15.1 vs 80.3 + 13.7 Kg. Conclusión: El entrenamiento de dos veces a la semana con un programa de fuerza integrado, durante 7 semanas incrementa la fuerza en forma significativa en jóvenes sanos de ambos

    DNA methylation dynamics in a coastal foundation seagrass species under abiotic stressors

    Get PDF
    DNA methylation (DNAm) has been intensively studied in terrestrial plants in response to environmental changes, but its dynamic changes in a temporal scale remain unexplored in marine plants. The seagrass Posidonia oceanica ranks among the slowest-growing and longest-living plants on Earth, and is particularly vulnerable to sea warming and local anthropogenic pressures. Here, we analysed the dynamics of DNAm changes in plants collected from coastal areas differentially impacted by eutrophication (i.e. oligotrophic, Ol; eutrophic, Eu) and exposed to abiotic stressors (nutrients, temperature increase and their combination). Levels of global DNAm (% 5-mC) and the expression of key genes involved in DNAm were assessed after one, two and five weeks of exposure. Results revealed a clear differentiation between plants, depending on environmental stimuli, time of exposure and plants' origin. % 5-mC levels were higher during the initial stress exposure especially in Ol plants, which upregulated almost all genes involved in DNAm. Contrarily, Eu plants showed lower expression levels, which increased under chronic exposure to stressors, particularly to temperature. These findings show that DNAm is dynamic in P. oceanica during stress exposure and underlined that environmental epigenetic variations could be implicated in the regulation of acclimation and phenotypic differences depending on local conditions

    A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic Euphotic Zone

    Get PDF
    A seven-component upper ocean ecosystem model of nitrogen cycling calibrated with observations at Bermuda Station “S” has been coupled to a three-dimensional seasonal general circulation model (GCM) of the North Atlantic ocean. The aim of this project is to improve our understanding of the role of upper ocean biological processes in controlling surface chemical distributions, and to develop approaches for assimilating large data sets relevant to this problem. A comparison of model predicted chlorophyll with satellite coastal zone color scanner observations shows that the ecosystem model is capable of responding realistically to a variety of physical forcing environments. Most of the discrepancies identified are due to problems with the GCM model. The new production predicted by the model is equivalent to 2 to 2.8 mol m−2 yr−1 of carbon uptake, or 8 to 12 GtC/yr on a global scale. The southern half of the subtropical gyre is the only major region of the model with almost complete surface nitrate removal (nitrate<0.1 mmol m−3). Despite this, almost the entire model is nitrate limited in the sense that any addition of nitrate supply would go predominantly into photosynthesis. The only exceptions are some coastal upwelling regions and the high latitudes during winter, where nitrate goes as high as ∼10 mmol m−3

    A new common functional coding variant at the DDC gene change renal enzyme activity and modify renal dopamine function.

    Get PDF
    The intra-renal dopamine (DA) system is highly expressed in the proximal tubule and contributes to Na+ and blood pressure homeostasis, as well as to the development of nephropathy. In the kidney, the enzyme DOPA Decarboxylase (DDC) originating from the circulation. We used a twin/family study design, followed by polymorphism association analysis at DDC locus to elucidate heritable influences on renal DA production. Dense single nucleotide polymorphism (SNP) genotyping across the DDC locus on chromosome 7p12 was analyzed by re-sequencing guided by trait-associated genetic markers to discover the responsible genetic variation. We also characterized kinetics of the expressed DDC mutant enzyme. Systematic polymorphism screening across the 15-Exon DDC locus revealed a single coding variant in Exon-14 that was associated with DA excretion and multiple other renal traits indicating pleiotropy. When expressed and characterized in eukaryotic cells, the 462Gln variant displayed lower Vmax (maximal rate of product formation by an enzyme) (21.3 versus 44.9 nmol/min/mg) and lower Km (substrate concentration at which half-maximal product formation is achieved by an enzyme.)(36.2 versus 46.8 μM) than the wild-type (Arg462) allele. The highly heritable DA excretion trait is substantially influenced by a previously uncharacterized common coding variant (Arg462Gln) at the DDC gene that affects multiple renal tubular and glomerular traits, and predicts accelerated functional decline in chronic kidney disease

    Does Warming Enhance the Effects of Eutrophication in the Seagrass Posidonia oceanica?

    Get PDF
    Seagrass meadows are disappearing at rates comparable to those reported for mangroves, coral reefs, and tropical rainforests. One of the main causes of their decline is the so-called cultural eutrophication, i.e., the input of abnormal amounts of nutrients derived from human activities. Besides the impact of eutrophication at a local scale, the occurrence of additional stress factors such as global sea warming may create synergisms in detriment of seagrass meadows’ health. In the present study, we aimed to evaluate if plants undergoing chronic cultural eutrophication and plants growing in relatively pristine waters are more (or less) sensitive to heat stress, nutrient load and the combination of both stressors. To address this question, a mesocosm experiment was conducted using Posidonia oceanica collected from two environments with different nutrients load history. Plants were exposed in controlled conditions to high nutrient concentrations, increased temperature and their combination for 5 weeks, to assess the effect of the single stressors and their interaction. Our results revealed that plants experiencing chronic cultural eutrophication (EU) are more sensitive to further exposure to multiple stressors than plants growing in oligotrophic habitats (OL). OL and EU plants showed different morphological traits and physiological performances, which corroborates the role of local pressures in activating different strategies in response to global environmental changes. EU-plants appeared to be weaker during the treatments, showing the greatest percentage of mortality, particularly under increased temperature. Temperature and nutrient treatments showed opposite effects when tested individually and an offset response when combined. The activation of physiological strategies with high energetic expenses to cope with excess of nutrients and other stressors, could affect plants present and future persistence, particularly under eutrophic conditions. Our results represent a step forward in understanding the complex interactions that occur in natural environments. Moreover, unraveling intraspecific strategies and the role of local acclimation/adaptation in response to multiple stressors could be crucial for seagrass conservation strategies under a climate change scenario
    corecore