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ABSTRACT
This article deals with the problem of room categorization, i.e. the
classification of a room as being a bathroom, kitchen, living-room,
bedroom, etc., by an autonomous robot operating in home environ-
ments. For that, we propose a room categorization system based on
a Bayesian probabilistic framework that combines object detections
and its semantics. For detecting objects we resort to a state-of-the-
art CNN, Mask R-CNN, while the meaning or semantics of those
detections is provided by an ontology. Such an ontology encodes the
relations between object and room categories, that is, in which room
types the different object categories are typically found (toilets in
bathrooms, microwaves in kitchens, etc.). The Bayesian framework
is in charge of fusing both sources of information and providing a
probability distribution over the set of categories the room can be-
long to. The proposed system has been evaluated in houses from the
Robot@Home dataset, validating its effectiveness under real-world
conditions.

CCS CONCEPTS
• Computing methodologies → Cognitive robotics; Proba-
bilistic reasoning; Ontology engineering.
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1 INTRODUCTION
Intelligent robots need to acquire and manage high-level informa-
tion about their workspace in order to understand and successfully
accomplish human commands like “go to the kitchen” or “bring me
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Figure 1: Categorization of a room by a mobile robot accord-
ing to the objects detected therein and its semantics.

the red book from the bedroom”. Homes are usually split into func-
tional areas, that we call rooms, where different human activities
take place, like cooking, resting, having fun, etc. For a mobile robot,
the ability to identify the category of a room: bedroom, kitchen,
bathroom, living-room, etc., opens the door to a more comprehen-
sive understanding of its workspace as well as to the possibility to
carry out a wider variety of tasks [1, 19].

Different approaches can be found in the literature facing the
room categorization problem. For example, there are works that
employ classifiers based on geometric or appearance features of the
room to categorize it [9, 10]. Other works exploit the fact that, given
that rooms have a certain functionality, the objects they contain
represent valuable information for their categorization [2, 8]. For
instance, since kitchens are spaces for storing and preparing food,
refrigerators or microwaves are usually placed there, while beds
are typically in bedrooms and couches in living-rooms. This kind
of semantic knowledge permits the utilization of detected objects
as a hint to infer the category of the room [13, 14]. From the point
of view of a mobile robot, which usually also needs to manage
information about their surrounding objects, this approach results
specially effective.

A clear drawback of the latter approach is that the performance
of the room categorization system highly depends on the reliability
of the object detection method. For example, if a night stand is
misclassified as a microwave, the room could be categorized as
a kitchen instead of as a bedroom. In recent years, Convolutional
Neural Networks (CNNs) like Faster R-CNN [12], YOLOv3 [11] or
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Mask R-CNN [5], have considerably increased the reliability of
object recognition systems, but wrong detections may still appear
producing incoherent room categorization results.

In this paper we contribute a room categorization system that
combines in a novel way object detections and its semantics, pursu-
ing a more coherent performance in the mobile robotics context. At
the core of this system is a Bayesian probabilistic framework, which
outputs a probability distribution over the set of categories a room
can belong to. For that end, such a framework is fed with both: the
objects detected in a sequence of images from a camera mounted
on a robot, as well as the meaning or semantics of those detections.
For recognizing objects we have resorted to Mask R-CNN, a state-
of-the-art network that provides masks over the inspected images
delimiting the pixels belonging to the detected objects, as well as
scoring values measuring its confidence about such detections. In
the proposed system multiple detections of the same object are
fused, hence increasing their consistency. Regarding the meaning
of these detections, it is retrieved from the Semantic Knowledge
about categories of rooms and objects, as well as their relations,
which are codified into an ontology [14, 20]. The consideration of
the uncertainty about the object recognition results, their fusion
when they belong to the same physical objects, as well as the ex-
ploitation of their semantics, allow the proposed system to achieve
coherent categorization results. Fig. 1 illustrates an example of the
outcome of our system while a robot is inspecting a room and some
objects have been detected.

The proposed system is further described in Sec. 2. To assess
the suitability of our approach when running on a mobile robot,
we have carried out several experiments in Sec. 3 with the Ro-
bot@Home dataset [17]. This dataset gives us data from RGB-D
cameras [22], a laser scanner and robot location along its trajectory
in different houses. We conclude the paper in Sec. 4 discussing the
work done and its possible extensions.

2 SYSTEM DESCRIPTION
This section describes the proposed system to categorize rooms
by exploiting the objects detected therein and its semantics. Fig. 2
outlines its pipeline. Briefly, a CNN is used to recognize the objects
in the room from RGB images, which returns the class, a pixel mask
and a confidence score for each detected object. Next, the robot
localization in the geometric (global) map of the environment is
used to compose its pose and the pose of the object, expressed in the
robot local reference frame. Since we are using calibrated RGB-D
cameras [21, 22], this information is available in the depth image.
Such composition permits to locate the object in such a geometric
map, so it can be checked if the object was previously detected
and if it is contained in the room being inspected. The relevant
information about the object is added to an ontology (Sec. 2.2),
which also contains previously stored human knowledge (HK) de-
scribing the different categories of rooms and objects that can be
found in a house, together with their relations (in our case, in which
room categories usually appear the considered object categories:
microwaves in kitchens, coaches in living-rooms, etc.).

Through high-level queries, we retrieve the objects that have
been previously detected inside a certain room and their scores, as
well as the probability for each class object appearing in each room
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Figure 2: Activity graph (employing unified modeling lan-
guage (UML)) showing the workflow of the system used to
categorization system of rooms by semantic objects.

category. Finally, a Bayesian probabilistic framework is in charge of
combining such information to compute a probability distribution
over the categories the inspected room can belong to (Sec. 2.3).

The following sections introduce the three main components of
the proposed system: object detection, semantic information and
room category inference.

2.1 Object detection
One of the fundamental components of our system is the object
detector, whose function is to analyze RGB images from a camera
mounted on a robot to obtain information about the objects in its
surroundings. For that purpose, we rely on a popular CNN, namely
Mask R-CNN [5], which yields: i) the class of the detected objects,
ii) masks of the pixels that belong to each class, and iii) confidence
scores. Fig. 2 shows at the output of the object detector a fragment
of an image with overlapping pixel masks indicating that a sink
and a toilet have been detected.

From these pixel masks, the position of a detected object in the
robot local frame can be retrieved in different ways. In our case,
since we make use of (extrinsically and intrinsically) calibrated
RGB-D cameras, such position can be extracted from the depth
image in the form of point clouds. Then, through the composition
of the robot pose in the (global) geometric map of the house and
the object position, the position of the object in such a map can
be obtained. This approach was also followed in [15]. The global
location of the detected object is useful for placing it within a certain
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Figure 3: Extract from the ontology used in this work, where
the blue arrows represent the isA predicate and the orange
ones stand for the isIn predicate. Top left, example of the de-
scription in the ontology of an instance of the concept Sink,
where its relations with other elements are marked in blue,
and its properties in green.

room as well as for checking future detections of the same object.
In this work, we consider that two observations refer to the same
object when they have the same category and the distance between
the position of both is less than a given threshold. This allows the
system to integrate knowledge about object detections over time,
reducing the uncertainty when objects are observed multiple times.

2.2 Semantic Knowledge
The usage of semantic knowledge encoded in ontologies exhibits
significant advantages for robots in a variety of tasks [3, 14, 18]. An
ontology can be defined as a formal representation of the concepts
related to a domain and their interrelations [20]. In this paper we
work with the house domain, the concepts are the categories of
objects (e.g. chair, bed, book, etc.) and rooms (e.g. kitchen, bedroom.
bathroom, etc.), and their relations are codified through predicates
like isA or isIn. With these resources, we can create instances of ob-
jects that belong to a category (e.g. isA(chair_2020,chair)) and relate
them to other categories (e.g. isIn(chair_2020,kitchen)) or properties
(e.g. score(chair_2020, 0.88)).

Semantic knowledge can be acquired in different ways, being
human elicitation [16] the choice in this work. Fig. 3 shows a frag-
ment of the resultant ontology codifying such knowledge, where
the relations between categories of objects and rooms are repre-
sented as orange arrows. During the robot operation in the house,
every time a new object is detected, a new instance is created in the
ontology that is described through a number of predicates. Fig. 3-
top-left illustrates an example of an object instance, including: i)
the category of the object as reported by the CNN, ii) the properties

of the object (marked with green squares), and iii) the room where
it has been seen according to its position (blue squares).

To implement such an ontology we have resorted to RDFSharp1,
which allows us to use the Web Ontology Language (OWL) to en-
code the described predicates. In addition, this software package
supports the execution of high-level queries through SPARQL, giv-
ing us the facility to retrieve the information required to feed the
next component of the categorization system (e.g. Give me all the
objects in this room (bathroom_1024)).

2.3 Bayesian Probabilistic Framework
To carry out the pursued categorization of rooms we have designed
a Bayesian framework [7] able to combine and exploit both sources
of information: the objects previously detected in the room (includ-
ing confidence scores about them), and the meaning or semantics
of these detections. In short, this framework formally performs rea-
soning like the following one “a microwave and an oven have been
detected with a high level of confidence, so this room must be a
kitchen”. The output of this component is a probability distribution
over the set of possible classes the room can belong to (bathroom,
bedroom, kitchen, livingroom, etc.). Let us introduce the following
definitions in order to properly state the problem:
• Let n be the number of objects detected in the room.
• noc represents the number of considered object categories.
• nrc models the number of considered room categories.
• Define zi = [zi,1, . . . , zim ], i = 1 : n as a a vector containing
them (visual) observations of the object i .
• Oi = {O

j
i , j = 1 : noc } is a random variable modeling the

category of object i , taking values on the set of possible
object categories OC .
• R is a random variable classifying the room by taking values
on the set of possible room categories RC .

Initially, when no information about the objects in the room
is available, the probability for it belonging to a certain category
P (R = RCi ) (simplified as P (R) for the sake of clarity) is defined as
a uniform distribution, that is:

P (R) = 1/nrc (1)
For a better understanding of the proposed formulation, let us

start by describing a simple case where a unique object is detected
in the room through the set of observations z. Then, the probability
in Eq. (1) is modified according to the output of the object detection
and semantic knowledge components as follows:

P (R |z) =
Noc∑
i=1

P (R |z,Oi )P (Oi |z) (2)

that is, such a probability is obtained by marginalizing over the
possible object categories that the detected object could belong to.
In such a marginalization two probabilities appear. The first one,
P (R |z,Oi ), represents the probability that the room belongs to a
certain category conditioned on the object observations z and the
object category Oi . Since we can safely assume that R ⊥⊥ z | Oi ,
i.e. that the category of the room is independent of the object obser-
vations given the object category, it can be simplified to P (R |Oi ).
1https://www.w3.org/2001/sw/wiki/RDFSharp

https://www.w3.org/2001/sw/wiki/RDFSharp
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This probability is defined by the information codified in the on-
tology, setting which object categories may appear in which room
categories. In this way, this probability distribution is defined as:

P (R |Oi ) =

{
0.9/count (Oi ,RC ) if ∃ isIn(Oi ,R)

0.1/(nrc − count (Oi ,RC )) if ∄ isIn(Oi ,R)
(3)

being count (Oi ,RC ) a function returning the number of room cate-
gories in which the object categoryOi may appear, and isIn(Oi ,R)
the predicate introduced in Sec. 2.2. Tab. 1 shows an example of
the computation of this distribution for some object and room cate-
gories.

The second probability distribution, P (Oi |z), models the proba-
bility that an object belongs to a category given its observations.
This probability is obtained from the ontology according to the
detection results. Concretely, Mask R-CNN is configured to return
detections with a confidence score in the range [0.7,1], and the
information relative to their pose, size and score are sent to the
ontology. In this way, when an object is detected, the information
already present in the ontology is used to check if it had been previ-
ously observed. If so, we fuse those detections in order to work with
more robust and coherent information. This is done in a simple
but effective fashion: by averaging the yielded objects poses, sizes,
and scores. Such averaging is weighted by the relevance of each
detection, measured by their individual scores, so more confident
detections contribute to a larger extent in this data fusion process.
Finally, in order to have a probability distribution over the set of
possible object categoriesOC , we consider the object category score,
assign a score of 0.1 for the remaining categories, and normalize
these values by dividing by the total sum of scores.

Once we have described how to compute the probability distribu-
tion over room categories given a detected object, let us extend this
formulation handle multiple objects. Concretely, this probability is
retrieved by recursively marginalizing over all the detected objects,
that is:

P (R |z1, . . . , zn ) =
∑Noc
i1=1 P (R |O

i1
1 , z1, . . . , zn )P (O

i1
1 |z1)

P (R |Oi1
1 , z2, . . . , zn ) =

∑Noc
i2=1 P (R |O

i1
1 ,O

i2
2 , z2, . . . , zn )P (O

i2
2 |z2)

· · ·

P (R |Oi1
1 , . . .O

n1
n ) =

∑Noc
in=1 P (R |O

i1
1 , . . . ,O

in
n )P (Oi1

n |zn )

(4)
All the probabilities in this definition have been previously in-

troduced, except P (R |Oi1
1 , . . . ,O

in
n ). By applying the Bayes rule to

it, and assuming that ROi ⊥⊥ O j | R, it can be expressed as:

P (R |Oi1
1 , . . . ,O

in
n ) =

∏n
m=1 P (R |O

im
m ) (5)

This recursive model can be expensive to calculate when there
are many objects within the room. In order to prevent this, the
probabilistic framework is only fed with the N objects having more
detections. This approach also performs as a filter that ignores
objects with spurious detections, which are probably wrong.

3 SYSTEM EVALUATION
To assess the performance of the proposed room categorization
system we have carried out an experiment where a mobile robot
has to operate in real houses. For that, we have resorted to the

Table 1: Conditional room category probabilities for each ob-
ject category: P (R |Oi ). As can be seen, the probabilities used
depend on the number of categories in which each object
can be detected following Eq. (3)

.
Object Class Kitchen Living room Dressing room Bedroom Bathroom
Microwave 0.9 0.025 0.025 0.025 0.025
Oven 0.9 0.025 0.025 0.025 0.025
Toaster 0.9 0.025 0.025 0.025 0.025
Tv 0.3 0.3 0.05 0.3 0.05
Bed 0.025 0.025 0.025 0.9 0.025
Bench 0.05 0.3 0.3 0.3 0.05
Chair 0.225 0.225 0.225 0.225 0.1
Couch 0.05 0.3 0.3 0.3 0.05
Dining Table 0.45 0.45 0.03 0.03 0.03
Sink 0.45 0.03 0.03 0.03 0.45
Toilet 0.025 0.025 0.025 0.025 0.9

Figure 4: On the left, the Giraff robot used in Robot@Home,
with a ring of 4 RGB-D cameras mounted. To the right, an
example of images of intensity (above) and depth (below) of
the dataset captured by the cameras.

Robot@Home dataset, described in Sec. 3.1. The setup of the ex-
periment is presented in Sec. 3.2 and, finally, we comment on the
obtained results (Sec. 3.3).

3.1 Dataset: Robot@Home
Robot@Home [17] is a repository of data gathered in real houses by a
Giraff robot [4] (see Fig. 4-left). Thismobile robot was equippedwith
a ring of four vertically positioned RGB-D cameras and a 2D laser
scanner mounted on the base. The dataset provides us with different
raids on real houses, also including geometric maps of those houses
and the localization of the robot during the raids. Additionally, it
also contains other processed data such as 3D reconstructions, used
in this work for the visualization of the results, and segmented
objects and rooms annotated with their ground truth categories.
It is publicly available at: http://mapir.isa.uma.es/work/robot-at-
home-dataset.

Fig. 4-right shows an example of four RGB-D observations si-
multaneously collected from the cameras onboard the robot. In
order to show the generality and applicability of our proposal for
room categorization through object detection, we have only consid-
ered images coming from the RGB-D camera looking forward, as it
supposes a more common sensory configuration in mobile robots.

http://mapir.isa.uma.es/work/robot-at-home-dataset
http://mapir.isa.uma.es/work/robot-at-home-dataset
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Figure 5: Virtual map of the house Anto with annotations of
the detected objects. On the left, the system interface and a
bar diagram representing the probability distribution over
the different categories the room in which the robot is lo-
cated can belong to.

3.2 Experimental Setup
In the experiment carried out the robot is tasked to categorize
the rooms of four houses within Robot@Home, concretely: alma,
anto, pare and rx2, considering five different categories: Bathroom,
Bedroom, Dressing Room, Kitchen and Living Room.

For the object detection component an instance of Mask R-CNN
pre-trained with the COCO [6] dataset is used, which includes
object categories typically appearing in houses such as chair, couch,
potted plant, bed, dining-table, toilet, tv monitor, etc. From these
categories, in this experiment we take into account those that can
be grouped into the Furniture and Appliance super-categories. The
reason for this is that they are static and highly related to certain
room categories, unlike more general objects like backpacks or
books.

Regarding the semantic knowledge component (recall Sec. 2.2),
as commented, Fig. 3 shows the relationships between the cate-
gories of objects and rooms used in this experiment, setting where
they could appear. These relations are rendered into probabilities
using Eq. (3), as illustrated in Tab. 1. Some object categories are
exclusive to one category of room, which means that finding them
in another category is unlikely (e.g.microwaves are usually in the
kitchen). On the other hand, other objects are more general, like
chairs, so they are less discriminant where categorizing rooms.
Concerning the number of detected objects to be considered by the
Bayesian framework, we have empirically checked that with N = 5
the system achieves a good trade-off between execution time and
categorization results.

3.3 Experimental Results
Fig. 5 shows an example of the interface used in the integration
of our system. We employ point clouds and virtual annotations to
represent the knowledge of the robot as it explores the environment.
This allows us to debug the performance of the system in a visual

Table 2: Probability distributions obtained for each room
in Anto (rows), a house from the Robot@Home dataset.
Columns represent the possible room categories. Correct
categorizations aremarked in green, in yellow those that are
not decisive, and in red wrong ones.

Rooms Kitchen Living room Dressing room Bedroom Bathroom
Kitchen-1 0.98 0.002 0.002 0.002 0.01
Living_room-1 0.025 0.025 0.025 0.91 0.025
Dressing_room-1 0.05 0.3 0.3 0.3 0.22
Bedroom-1 0.004 0.004 0.004 0.96 0.004
Bedroom-2 0.02 0.02 0.02 0.91 0.01
Bedroom-3 0.07 0.42 0.07 0.42 0.005
Bathroom-1 0.05 0.05 0.05 0.05 0.92
Bathroom-2 0.026 0.011 0.011 0.011 0.93

Table 3: Results obtained from 5 executions in each house.
The last row shows the global average.

#Rooms × executions Success Inconclusive Wrong
Alma 5 × 5 0.60 0.20 0.20
Anto 8 × 5 0.60 0.35 0.03
Pare 8 × 5 0.58 0.30 0.13
Rx2 4 × 5 0.55 0.31 0.20

Global Average 0.59 0.29 0.12

and friendly way, knowing at any given moment where and what
detections the robot has made. In addition, the results obtained
from the probabilistic framework are represented on the left of the
interface in the form of a bar graph. Such results are updated each
time the object detection component raises a detection.

For each execution of the experiment, the proposed categoriza-
tion system retrieves, for every room, a probability distribution
over the considered categories according to the objects detected
therein. Tab. 2 shows an example of the results of one execution
with Anto house. The first column shows the ground truth category
of each room, while the other columns report the probabilities com-
puted by the system for the considered categories. In this table the
successful categorizations are highlighted in green, the wrong one
in red, and the two rooms with inconclusive results in yellow. It
is worth mentioning that the wrong categorization was due to the
misclassification of a couch as a bed.

Tab. 3 provides the accuracy achieved by the categorization sys-
tem, obtained from running it five timeswith the data collected from
each house. This is done because the results between executions in
the same house may differ depending on the images processed by
the object detection component, since they are provided at a higher
frequency than the one achieved by such component, which only
processes the most recent one. The last row shows the average of
success, inconclusive and wrong results for the 20 runs. We can see
how, in general, the system reaches a high categorization accuracy,
exhibiting only a 12% of wrong classifications. The interested reader
can see the categorization system in action in the following video:
https://youtu.be/0suNQ1v6uVU.

The confusion matrix obtained from the 20 executions of the
system is depicted in Fig. 6. In such a matrix, rows index ground
truth categories, while columns index the categories returned by
the categorization system. From there we can verify that, regard-
ing categorization accuracy, the three top categories are Bathroom

https://youtu.be/0suNQ1v6uVU
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Figure 6: Confusion matrix from the categorization of
rooms in the conducted experiments.

(97%), Kitchen (77%) and Bedroom (65%), while there are some cate-
gories difficult to distinguish: Living room and Dressing rooms. This
inconclusive categorizations are mainly due to the absence of de-
tections of objects belonging to categories that typically appear in
those room types. Results are more precise when there are detected
objects that can be only found in a reduced set of room categories,
e.g.when a toilet is detected multiple times, the probability of the
room being a bathroom notably increases. Instead, detections of
objects common to multiple categories, as is the case of chairs (may
appear in living rooms, kitchens, dressing rooms or bedrooms),
provide poor information towards room categorization.

After analyzing the results, we observed that misclassifications
are mainly due to incorrect object detections that, combined with
a reduced number of objects detected in the room, cause the sys-
tem to perform incorrectly. A way to mitigate this issue could be
the utilization of an object classifier able to detect a wider range
of object categories, hence providing more detections towards a
more robust performance. Besides, the experiment was carried out
passively, i.e. while the robot was moving according to the path it
followed during the dataset collection. We argue that the results
could improve if the robot was able to carefully inspect each room
in order to get further information (additional object detections),
perhaps also including an active perception module.

4 CONCLUSIONS
This paper has presented a room categorization system able to com-
bine and exploit object detections and its semantics. The proposed
approach relies on the use of a state-of-the-art CNN to recognize ob-
jects, an ontology to encode the relationships between objects and
room categories (semantic knowledge), and a Bayesian probabilistic
framework to fuse all the information and provide a probability
distribution over the set of categories the room can belong to. These
components permit us to leverage the fact that objects are placed
in rooms according to their functionality, as well as to manage the
uncertainty inherent to the object detection and room categoriza-
tion processes. The outcome of the system can be further exploited
by mobile robots to efficiently perform high-level tasks.

The suitability of our proposal has been evaluated in four real
houses from the Robot@Home dataset. The reported results support
our claim that objects’ detections and its meaning are valuable
resources towards room categorization, only producing a 12% of
wrong classifications.

As future work, we plan to design an algorithm to evaluate when
the robot has gather enough information for the categorization to
be conclusive. For this, rather than the detection being a passive
process, the robot should carefully inspect every room looking for
objects.
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