446 research outputs found

    Bowel Histology of CVID Patients Reveals Distinct Patterns of Mucosal Inflammation

    Get PDF
    Diarrhea is the commonest gastrointestinal symptom in patients with common variable immunodeficiency (CVID). Different pathologies in patients’ bowel biopsies have been described and links with infections have been demonstrated. The aim of this study was to analyze the bowel histology of CVID patients in the Royal-Free-Hospital (RFH) London CVID cohort. Ninety-five bowel histology samples from 44 adult CVID patients were reviewed and grouped by histological patterns. Reasons for endoscopy and possible causative infections were recorded. Lymphocyte phenotyping results were compared between patients with different histological features. There was no distinctive feature that occurred in most diarrhea patients. Out of 44 patients (95 biopsies), 38 lacked plasma cells. In 14 of 21 patients with nodular lymphoid hyperplasia (NLH), this was the only visible pathology. In two patients, an infection with Giardia lamblia was associated with NLH. An IBD-like picture was seen in two patients. A coeliac-like picture was found in six patients, four of these had norovirus. NLH as well as inflammation often occurred as single features. There was no difference in blood lymphocyte phenotyping results comparing groups of histological features. We suggest that bowel histology in CVID patients with abdominal symptoms falls into three major histological patterns: (i) a coeliac-like histology, (ii) IBD-like changes, and (iii) NLH. Most patients, but remarkably not all, lacked plasma cells. CVID patients with diarrhea may have an altered bowel histology due to poorly understood and likely diverse immune-mediated mechanisms, occasionally driven by infections

    A conscious rethink : Why is brain tissue commonly preserved in the archaeological record? Commentary on: Petrone P, Pucci P, Niola M, et al. Heat-induced brain vitrification from the Vesuvius eruption in C.E. 79. N Engl J Med 2020;382:383-4. DOI: 10.1056/NEJMc1909867

    Get PDF
    Brain tissue is ubiquitous in the archaeological record. Multiple, independent studies report the finding of black, resinous or shiny brain tissue, and Petrone et al. [2020 “Heat-induced Brain Vitrification from the Vesuvius Eruption in C.E. 79.” N Engl J Med. 382: 383–384; doi:10.1056/NEJMc1909867] raise the intriguing prospect of a role for vitrification in the preservation of ancient biomolecules. However, Petrone et al. (2020) have not made their raw data available, and no detailed laboratory or analytical methodology is offered. Issues of contamination and misinterpretation hampered a decade of research in biomolecular archaeology, such that addressing these sources of bias and facilitating validation of specious findings has become both routine and of paramount importance in the discipline. We argue that the evidence they present does not support their conclusion of heat-induced vitrification of human brain tissue, and that future studies should share palaeoproteomic data in an open access repository to facilitate comparative analysis of the recovery of ancient proteins and patterns of their degradation

    Femtosecond multimodal imaging with a laser-driven X-ray source

    Get PDF
    Laser-plasma accelerators are compact linear accelerators based on the interaction of high-power lasers with plasma to form accelerating structures up to 1000 times smaller than standard radiofrequency cavities, and they come with an embedded X-ray source, namely betatron source, with unique properties: small source size and femtosecond pulse duration. A still unexplored possibility to exploit the betatron source comes from combining it with imaging methods able to encode multiple information like transmission and phase into a single-shot acquisition approach. In this work, we combine edge illumination-beam tracking (EI-BT) with a betatron X-ray source and present the demonstration of multimodal imaging (transmission, refraction, and scattering) with a compact light source down to the femtosecond timescale. The advantage of EI-BT is that it allows multimodal X-ray imaging technique, granting access to transmission, refraction and scattering signals from standard low-coherence laboratory X-ray sources in a single shot

    Wakefields in a cluster plasma

    Get PDF
    We report the first comprehensive study of large amplitude Langmuir waves in a plasma of nanometer-scale clusters. Using an oblique angle single-shot frequency domain holography diagnostic, the shape of these wakefields is captured for the first time. The wavefronts are observed to curve backwards, in contrast to the forwards curvature of wakefields in uniform plasma. Due to the expansion of the clusters, the first wakefield period is longer than those trailing it. The features of the data are well described by fully relativistic two-dimensional particle-in-cell simulations and by a quasianalytic solution for a one-dimensional, nonlinear wakefield in a cluster plasma

    Design mining interacting wind turbines

    Get PDF
    © 2016 by the Massachusetts Institute of Technology. An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions weremade. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogateassisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined

    Assessing the cost of global biodiversity and conservation knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by stan-dards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge productsfor biodiversity conservation, and they are widely used to inform policy and advise decisionmakers and practitioners. However, the financial cost of delivering this information is largelyundocumented. We evaluated the costs and funding sources for developing and maintain-ing four global biodiversity and conservation knowledge products: The IUCN Red List ofThreatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the WorldDatabase of Key Biodiversity Areas. These are secondary data sets, built on primary datacollected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160million (range: US116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US14million(rangeUS 14 million (range US12–16 million), were invested inthese four knowledge products between 1979 and 2013. More than half of this financingwas provided through philanthropy, and nearly three-quarters was spent on personnelcosts. The estimated annual cost of maintaining data and platforms for three of these knowl-edge products (excluding the IUCN Red List of Ecosystems for which annual costs were notpossible to estimate for 2013) is US6.5millionintotal(range:US6.5 million in total (range: US6.2–6.7 million). We esti-mated that an additional US114millionwillbeneededtoreachpredefinedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmaintenancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines ofdata coverage for all the four knowledge products, and that once achieved, annual mainte-nance costs will be approximately US12 million. These costs are much lower than those tomaintain many other, similarly important, global knowledge products. Ensuring that biodi-versity and conservation knowledge products are sufficiently up to date, comprehensiveand accurate is fundamental to inform decision-making for biodiversity conservation andsustainable development. Thus, the development and implementation of plans for sustain-able long-term financing for them is critical

    X-ray harmonic comb from relativistic electron spikes

    Get PDF
    X-ray devices are far superior to optical ones for providing nanometre spatial and attosecond temporal resolutions. Such resolution is indispensable in biology, medicine, physics, material sciences, and their applications. A bright ultrafast coherent X-ray source is highly desirable, for example, for the diffractive imaging of individual large molecules, viruses, or cells. Here we demonstrate experimentally a new compact X-ray source involving high-order harmonics produced by a relativistic-irradiance femtosecond laser in a gas target. In our first implementation using a 9 Terawatt laser, coherent soft X-rays are emitted with a comb-like spectrum reaching the 'water window' range. The generation mechanism is robust being based on phenomena inherent in relativistic laser plasmas: self-focusing, nonlinear wave generation accompanied by electron density singularities, and collective radiation by a compact electric charge. The formation of singularities (electron density spikes) is described by the elegant mathematical catastrophe theory, which explains sudden changes in various complex systems, from physics to social sciences. The new X-ray source has advantageous scalings, as the maximum harmonic order is proportional to the cube of the laser amplitude enhanced by relativistic self-focusing in plasma. This allows straightforward extension of the coherent X-ray generation to the keV and tens of keV spectral regions. The implemented X-ray source is remarkably easily accessible: the requirements for the laser can be met in a university-scale laboratory, the gas jet is a replenishable debris-free target, and the harmonics emanate directly from the gas jet without additional devices. Our results open the way to a compact coherent ultrashort brilliant X-ray source with single shot and high-repetition rate capabilities, suitable for numerous applications and diagnostics in many research fields

    A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector Neutrino Beam

    Get PDF
    We report the results of a search for muon-neutrino disappearance by the Main Injector Neutrino Oscillation Search. The experiment uses two detectors separated by 734 km to observe a beam of neutrinos created by the Neutrinos at the Main Injector facility at Fermi National Accelerator Laboratory. The data were collected in the first 282 days of beam operations and correspond to an exposure of 1.27e20 protons on target. Based on measurements in the Near Detector, in the absence of neutrino oscillations we expected 336 +/- 14 muon-neutrino charged-current interactions at the Far Detector but observed 215. This deficit of events corresponds to a significance of 5.2 standard deviations. The deficit is energy dependent and is consistent with two-flavor neutrino oscillations according to delta m-squared = 2.74e-3 +0.44/-0.26e-3 eV^2 and sin^2(2 theta) > 0.87 at 68% confidence level.Comment: In submission to Phys. Rev.

    Measurement of the Atmospheric Muon Charge Ratio at TeV Energies with MINOS

    Get PDF
    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 meters-water-equivalent in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be 1.374 +/- 0.004 (stat.) +0.012 -0.010(sys.). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the two standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3 -- 1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.Comment: 16 pages, 17 figure
    corecore