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Abstract
An initial study has recently been presented of surrogate-assisted evolutionary algo-
rithms used to design vertical-axis wind turbines wherein candidate prototypes are
evaluated under fan-generated wind conditions after being physically instantiated by
a 3D printer. Unlike other approaches, such as computational fluid dynamics simula-
tions, no mathematical formulations were used and no model assumptions were made.
This paper extends that work by exploring alternative surrogate modelling and evolu-
tionary techniques. The accuracy of various modelling algorithms used to estimate the
fitness of evaluated individuals from the initial experiments is compared. The effect
of temporally windowing surrogate model training samples is explored. A surrogate-
assisted approach based on an enhanced local search is introduced; and alternative
coevolution collaboration schemes are examined.
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1 Introduction

Renewable energy contributed over half of total net additions to global electric generat-
ing capacity from all sources in 2012, with wind power accounting for around 39% of the
renewable power added (REN21, 2013, p. 13). Currently, arrays of horizontal-axis wind
turbines (HAWTs) are the most commonly used form of wind farm employed to extract
large amounts of wind energy. However, as the turbines extract the energy from the
wind, the energy content decreases and the amount of turbulence increases downstream
from each. For example, see Hasager et al. (2013) for photographs and explanation of
the well-known wake effect at the Horns Rev offshore wind farm in the North Sea.
Because of this, HAWTs must be spaced 3–5 turbine diameters apart in the cross-wind
direction and 6–10 diameters apart in the downwind direction in order to maintain 90%
of the performance of isolated HAWTs (Dabiri, 2011). The study of these wake effects
is therefore a very complex and important area of research (Barthelmie et al., 2006), as
is turbine placement (Mosetti et al., 1994). Thus, “modern wind farms comprised of
HAWTs require significant land resources to separate each wind turbine from the adja-
cent turbine wakes. This aerodynamic constraint limits the amount of power that can be
extracted from a given wind farm footprint. The resulting inefficiency of HAWT farms
is currently compensated by using taller wind turbines to access greater wind resources
at high altitudes, but this solution comes at the expense of higher engineering costs and
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greater visual, acoustic, radar and environmental impact” (Dabiri, 2011, p. 1). This has
forced wind energy systems away from high energy demand population centres and
toward remote locations with higher distribution costs.

In contrast, vertical-axis wind turbines (VAWTs) do not need to be oriented to wind
direction and the spacing constraints of HAWTs often do not apply. VAWT performance
can even be increased by the exploitation of interturbine flow effects (Charwat, 1978). In
addition, VAWTs can also be easier to manufacture, may scale more easily, are typically
inherently lightweight with little or no noise pollution, and are more able to tolerate
extreme weather conditions (Eriksson et al., 2008). This has resulted in a recent expan-
sion of their use in urban environments (Toja-Silva et al., 2013). However, their design
space is complex and relatively unexplored. Generally, two classes of design are cur-
rently under investigation and exploitation: Savonius (1930), which has blades attached
directly upon the central axis structure; and Darrieus (1931), where the blades—either
straight or curved—are positioned predominantly away from the central structure. Hy-
brids also exist. The small body of previous work considering VAWT farms/arrays has
used turbines originally intended to operate alone. Our work is the only known work
to consider designing VAWTs in arrays of interacting turbines.

We have presented an initial study (Preen and Bull, 2014a) of surrogate-assisted ge-
netic algorithms (SGAs; Dunham et al., 1963) used to design VAWTs wherein candidate
prototypes are evaluated under fan-generated wind conditions after being physically
instantiated by a 3D printer. That is, unlike other approaches, no mathematical for-
mulations are used and no model assumptions are made. Initially, artificial evolution
was used to explore the design space of a single isolated VAWT, and subsequently a
cooperative coevolutionary genetic algorithm (CGA; Husbands and Mill, 1991) was
applied to explore the design space of an array of two closely positioned VAWTs. Both
conventional CGA and surrogate-assisted SCGA versions were examined; increased
aerodynamic performance (rotational speed) in fewer fabrications was found with sur-
rogate assistance. For single turbine comparison, the fittest evolved designs were found
to be aerodynamically more efficient than several common human designs under the
experimental conditions. In this paper, we extend that work by exploring alterna-
tive surrogate modelling and evolutionary techniques. First, the accuracy of various
modelling techniques used to estimate the fitness of the individuals from the initial
experiments is compared. Subsequently, we compare surrogate model performance
with different training samples. An alternative surrogate approach based on an en-
hanced local search is introduced. Finally, alternative coevolution collaboration schemes
are examined, including one that considers the potential for symmetry within the
task.

2 Background

2.1 Interacting Vertical-Axis Wind Turbines

Arrays of closely spaced VAWTs have long been considered for use as wind power
stations. For example, Charwat (1978) observed an improvement in the performance
of a pair of closely spaced S-shaped VAWT (S-rotors), whether counter or co-rotating,
compared with that of a single turbine. Figure 1 illustrates the possible rotation con-
figurations of a pair of VAWTs. Despite this, VAWTs have been restricted to niche
applications because a single HAWT provides a much higher efficiency compared with
a single VAWT. However, Kinzel et al. (2012) performed an experimental field study
of an array of nine pairs of full-scale counter-rotating VAWTs. They found that the
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Figure 1: Possible VAWT pair rotation configurations.

wind velocity behind a turbine pair recovers to 95% of the wind velocity upwind after
approximately 6 turbine diameters, compared with 4 diameters for the wake behind a
single VAWT and 14 diameters for HAWTs. Thus, closely spaced VAWTs can result in
an overall reduction in the average interturbine spacing as well as increasing individ-
ual performance, leading to a much greater power density. Indeed, it has recently been
shown (Dabiri, 2011) that power densities an order of magnitude greater can potentially
be achieved by arranging VAWTs in layouts utilising counter-rotation that enable them
to extract energy from adjacent wakes and from above the wind farm.

A growing body of work has explored techniques to optimise a given wind farm
layout—termed micrositing. Algorithms used include genetic algorithms (GAs; Mosetti
et al., 1994), evolution strategies (ESs; Kusiak and Song, 2010), particle swarm opti-
misation (Aristidis et al., 2010), ant colony optimisation (Eroğlu and Seçkiner, 2012),
Monte Carlo simulation (Marmidis et al., 2008), and principles from fish schooling
(Whittlesey et al., 2010). See Salcedo-Sanz et al. (2011) for a review of evolutionary
computation–based techniques for micrositing. Importantly, all of this work has been
based on wake models of varying degrees of fidelity.

To date, heterogeneity in wind farms has been almost completely unexplored.
Chamorro et al. (2014) investigated a variable-sized HAWT array composed of 3 × 8
model wind turbines where large and small turbines were alternately positioned. They
found that size heterogeneity has positive effects on turbulent loading as a result of the
larger turbines facing a more uniform turbulence distribution and the smaller turbines
operating under lower turbulence levels. The interactions show the possibility that
heterogeneity within wind farms has the potential to improve the overall ability to
harvest energy. Our initial study (Preen and Bull, 2014a) observed that VAWT array
asymmetry can be more efficient than similar symmetrical designs; for example, the
individuals from the fittest SCGA array pairing after 160 fabrications were duplicated
to form homogeneous arrays, and the maximum combined rotational speed was found
to be lower than the heterogeneous array.
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2.2 Evolutionary Design

Evolutionary algorithms (EAs) have long been used to design 3D physical objects.
Notably, Hornby et al. (2011) evolved and manufactured an X-band satellite antenna for
NASA’s ST5 spacecraft, representing the world’s first artificially evolved hardware in
space. Significantly, the evolved antennas outperformed a design hand-produced by the
antenna contractor for the mission. Most approaches, however, have used simulations
to provide the fitness scores of the evolved designs before final fabrication.

Most of blade design optimisation is performed through the use of computational
fluid dynamics (CFD) simulations, typically described with 3D Navier-Stokes equations
(Anderson, 1995). However, 3D CFD simulations are computationally expensive, with
a single calculation taking hours on a high-performance computer, making their use
with an iterative search approach difficult. Moreover, assumptions need to be made,
for instance, regarding turbulence or pressure distributions, which can significantly
affect accuracy when modelling interacting wind turbines. Previous evolutionary stud-
ies have been undertaken with types of CFD to optimise the blade profile for both
HAWT (Hampsey, 2002) and VAWT (Carrigan et al., 2012) to varying degrees of suc-
cess/realism.

The evaluation of physical artifacts directly for fitness determination can be traced
to the origins of evolutionary computation (Dunham et al., 1963). For example, the
first ESs were used to design jet nozzles with a string of section diameters, which
were then machined and tested for fitness (Rechenberg, 1971). Other well-known ex-
amples include robot controller design (Nolfi, 1992), electronic circuit design using
programmable hardware (Thompson, 1998), product design via human-provided fit-
ness values (Herdy, 1996), chemical systems (Theis et al., 2006), and unconventional
computers (Harding and Miller, 2004). Boria et al. (2009) used an EA to evolve a morph-
ing wing structure where physical designs were morphed using a set of actuators and
evaluated in a closed-loop wind tunnel.

Evolution in hardware has the potential to benefit from access to a richer envi-
ronment; it can exploit subtle interactions that can be utilised in unexpected ways. For
example, the EA used by Thompson (1998) to work with field-programmable gate array
circuits used some subtle physical properties of the system to solve problems where
the properties used are still not understood. Humans can be prevented from designing
systems that exploit these subtle and complex physical characteristics through their lack
of knowledge; however this does not prevent exploitation through artificial evolution.
There is thus a real possibility that evolution in hardware may allow the discovery of
new physical effects, which can be harnessed for computation/optimisation (Miller and
Downing, 2002).

Moreover, the advent of high-quality, low-cost additive rapid fabrication technol-
ogy, known as 3D printing, means it is now possible to fabricate a wide range of
prototype designs quickly and cheaply. 3D printers are now capable of printing a grow-
ing array of different materials; examples include chocolate (Hao et al., 2009) and meat
(Lipton et al., 2010) for culinary design; sugar to help create synthetic livers (Miller et al.,
2012); chemicals for custom drug design (Symes et al., 2012); cells for functional blood
vessels (Jakab et al., 2008) and artificial cartilage (Xu et al., 2013); plastic for Southampton
University laser sintered aircraft; thermoplastic for electronic sensors (Leigh et al., 2012);
titanium for prosthetics such as the synthetic mandible developed by the University of
Hasselt and transplanted into an 83-year-old woman; and liquid metal for stretchable
electronics (Ladd et al., 2013). One potential benefit of the technology is the ability to
perform fabrication directly in the target environment; for example, Cohen et al. (2010)
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used a 3D printer to perform a minimally invasive repair of the cartilage and bone of
a calf femur in situ. Lipson and Pollack (2000) were the first to exploit the emerging
technology in conjunction with an EA using a simulation of the mechanics and control,
ultimately printing mobile robots with embodied neural network controllers.

2.3 Surrogate-Assisted Evolutionary Algorithms

Whilst the speed and cost of rapid prototyping continues to improve, fabricating an
evolved design before fitness can be assigned remains an expensive task when poten-
tially thousands of evaluations are required; for instance, 10 minutes print time for
each very simple individual (Rieffel and Sayles, 2010). However, given a sample D of
evaluated individuals N, a surrogate model (also known as a metamodel or response
surface model) y = f (�x) can be constructed, where �x is the genotype and y fitness, in
order to compute the fitness of an unseen data point �x /∈ D. The use of surrogate models
has been shown to reduce the convergence time in evolutionary computation and mul-
tiobjective optimisation; see Jin (2011). Refer to Viana et al. (2014) for general reviews
and Forrester and Keane (2009) for aerospace design optimisation.

Typically, a set of evaluated genotypes and their real fitness scores are used to
perform the supervised training of a multilayer perceptron-based (MLP; Rosenblatt,
1962) artificial neural network (e.g., Eberhart, 1992). However, other approaches are
widely used, for example, kriging (e.g., Ratle, 2001), clustering (e.g., Kim and Cho, 2001),
support vector regression (e.g., Yun et al., 2009), radial-basis functions (e.g., Ong et al.,
2006), and sequential parameter optimisation (e.g., Bartz-Beielstein, 2006). The surrogate
model is subsequently used to compute estimated fitness values for the EA to utilise.
The model must be periodically retrained with new individuals under a controlled
evolutionary approach (also known as model management) to prevent convergence on
local optima. Retraining can be performed by taking either an individual or generational
approach. In the individual approach, n number of individuals in the population, P, are
chosen and evaluated with the real fitness function each generation. In the generational
approach, the entirety of P is evaluated on the real fitness function each nth generation.
Typically the members with the highest approximated fitness are chosen to be evaluated
with the real fitness function in the individual approach, although alternative schemes
have been suggested; Bull (1999) found that evaluating both the best and random
individuals suggested by a neural network surrogate model resulted in a significant
improvement over exclusively evaluating either the best or random individuals. Both
global modelling and local modelling using trust regions (e.g., samples within a certain
Euclidean distance) are popular approaches (Le et al., 2013). Resampling methods and
surrogate model validation remain an important and ongoing area of research, enabling
the comparison and optimisation of models (Bischl et al., 2012).

The use of approximations in a coevolutionary context has previously been shown
capable of solving computationally expensive optimisation problems with varying de-
grees of epistasis more efficiently than conventional CGAs through the use of radial
basis functions (Ong et al., 2002) and memetic algorithms (Goh et al., 2011).

2.4 Coevolution

Since the early work in evolving both competitive (Axelrod, 1987) and cooperative
(Husbands and Mill, 1991) multiagent systems, the problem of how to pick evaluation
partners has been noted. Many strategies have been presented, which vary from the ex-
treme case of each individual in one population using all others in all other populations
(e.g., Koza, 1991), to each individual using a subset of the others (e.g., Hillis, 1991), to
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the computationally more preferable use of one individual from each population (e.g.,
Bull and Fogarty, 1993). The use of the current best individuals from the other species
populations was examined by Potter and De Jong (1994). In their work, all populations
also received a shared fitness measure. Using a generational CGA, they reported that
the strategy performed well. They also suggested that for higher cross-species epistasis
an additional randomly selected individual should be used as a partner and the highest
obtained fitness from the two pairings assigned to the evaluating genome. Bull (1997a)
examined various strategies for choosing evaluation partners from coevolving popula-
tions and also found improved performance on problems with significant cross-species
epistasis when using multipartner strategies. No significant difference was observed
whether the second collaborator was chosen randomly or fitness proportionately after
Paredis (1994). These early results suggested that the collaboration method depends
entirely upon the amount of epistatic interaction between different species. However
the issue is more complex; for example, Wiegand et al. (2001) found that simply using
the fittest individual as the collaborating partner worked best on a nonlinearly separa-
ble quadratic problem with cross-species epistasis. In addition, they found that when
using multiple collaborative function evaluations, assigning the fitness score from the
best collaboration is significantly better than using either the worst or average of the
scores.

3 Methodology

Here, we investigate the use of SCGAs to design small wind farms, utilising the ag-
gregated rotational speed of the array as fitness. Each VAWT is treated separately by
evolution and approximation techniques; thus, heterogeneous designs could emerge.

A vector of 10 integers is used as a simple and compact encoding of the x-y-axis of
a prototype VAWT. Each allele thus controls one-tenth of a single z-layer. A workspace
(maximum object size) of 30 × 30 × 30 mm is used so that the instantiated prototype
is small enough for timely production (∼30 minutes) and with low material cost, yet
large enough to be sufficient for fitness evaluation. The workspace has a resolution of
100 × 100 × 100 voxels. A central platform is constructed for each individual to enable
the object to be placed on to the evaluation equipment. The platform consists of a square
torus, 1 voxel in width and with a centre of 14 × 14 empty voxels that are duplicated
for each z layer, thus creating a hollow tube that is 3 mm in diameter.

To translate the genome for a single z layer, an equilateral cross is constructed using
the 10 aforementioned genes, with four blades bent at right angles and an allele range [1,
42]. For northeast and southwest quadrants the baseline is a horizontal line at y-axis =
50, and for northwest and southeast quadrants the baseline is a vertical line at x-axis =
50. Starting from the central platform and translating each gene successively, the one-
tenth of voxels controlled by that gene are then drawn from the allele + baseline toward
the baseline; see Figure 2a. If the current allele+baseline is greater than or the same as
the previous allele+baseline, the voxels are enabled from the current allele+baseline
to the previous allele+baseline and extended a further 2 voxels toward the baseline
for structural support; see Figure 2b. If the current allele+baseline is less than or the
same as the previous lower ending position, causing a gap, the voxels are enabled
from the current allele+baseline upward to the previous lower position and extended a
further 2 voxels; see Figure 2c. In all other cases, 2 voxels are enabled from the current
allele+baseline position toward the baseline; see Figure 2d.

An example phenotype without z-axis variation is shown in Figure 3. When pro-
duction is desired, the 3D binary voxel array is converted to stereolithography (STL)
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Figure 2: Translation of x-y-axis genome [5, 8, 2, 4]. (a) The voxels are enabled from the
first allele (5) to the baseline (bottom). (b) Subsequently, the voxels are enabled from
the second allele (8) to the previous allele (5) and extended 2 voxels. (c) The third allele
(2) is less than the previous lower position (3), causing a gap, and is thus drawn from
the allele (2) to the previous lower position and extended 2 voxels to provide structural
support. (d) The allele (4) is less than the previous upper position (5), and 2 voxels are
enabled from the allele toward the baseline.

Figure 3: Example phenotype; genome = [2, 2, 3, 4, 5, 8, 13, 20, 34, 40].

format. Once encoded in STL, it then undergoes postprocessing with the application
of 50 Laplacian smoothing steps using MeshLab;1 see smoothed example phenotype in
Figure 4. Finally, the object is converted to printer-readable G-code and is subsequently
fabricated on a BFB 3000 printer (0.25 mm resolution) using a polylactic acid (PLA)
bioplastic. Figure 5 shows the smoothed object after fabrication.

To enable prototypes with z-axis variability, the genome also includes five additional
integers in the range [−42,42], each controlling one-sixth of the z-axis. After drawing
the initial z-layer as previously described, each z gene transforms the x-y genome for
the next successive z-layer by uniformly adding the allele value, after which it is drawn
as described. For example, with an x-y-axis genome of [2, 2, 3, 4, 5, 8, 13, 20, 34, 40]

1MeshLab is an open source, portable, and extensible system for the processing and editing of
unstructured 3D triangular meshes. http://meshlab.sourceforge.net/
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Figure 4: Example with 50 Laplacian smoothing steps applied.

Figure 5: Example smoothed and printed by a 3D printer; 30 × 30 × 30 mm; 27 minutes
printing time.

and z-axis genome of [2, −5, 10, 3, −2], the next z-layer is translated using the x-y-axis
genome of [4, 4, 5, 6, 7, 10, 15, 22, 36, 42] and the following z-layer is translated with [1,
1, 1, 1, 2, 5, 10, 17, 31, 37], and so on.

Since the interaction effects of rotor direction in the context of differing turbine
morphology, relative phase angle, separation distance, positional layout, wind velocity,
and so on, are not well understood, a Boolean gene is added to designate the rotation
direction of a VAWT. Thus, a total of 16 genes define an individual. In a previous
CGA experiment (Preen and Bull, 2014a) with two Savonius turbines positioned 0.1
diameters adjacently and in perpendicular position to the air flow, the average combined
rotational speed of the final 20 counter-rotating pairs (M = 1,760, SD = 206, N = 20)
was significantly less than the average combined rotational speed of the final 20 co-
rotating pairs (M = 2,048, SD = 95, N = 20) using a two-tailed Mann-Whitney test (U =
17, p ≤ 7.39 × 10−7), showing that co-rotation was found to result in faster combined
rotational speed. It can be noted that this result is similar to Sun et al. (2012) where
two counter-rotating S-rotors performed worse than co-rotating versions when placed
at small separation distances.

The CGA used herein proceeds with two species populations, a maximum mutation
step size of ±10, a per allele mutation rate of 25%, and a crossover rate of 0%. A
tournament size of 3 takes place for both selection and replacement. To help increase
performance and save fabrication time, each species population initially consists of the
first 10 (>0 rpm) individuals from a single VAWT (z-varying) experiment of Preen and
Bull (2014a), both normally rotated and counter-rotated. These individuals still retain a
good degree of randomness while possessing some useful aerodynamic properties. Each
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species thus maintains P = 20 individuals. The individuals in each species population
are initially evaluated in collaboration with a single randomly selected individual from
the other species population. Thereafter, the CGA proceeds by alternating between
species after each offspring is formed and evaluated with the elite member from the
other species; see Algorithm 1.

For the surrogate-assisted architecture described in this article, the basic CGA re-
mains unchanged except that fitness evaluations are obtained from a forward pass of
the genome through a neural network when the real fitness value is unknown. Initially
the entire population is fabricated and evaluated on the real fitness function and added
to an evaluated set. The model is trained using backpropagation for 1,000 epochs, where
an epoch consists of randomly selecting, without replacement, an individual from the
evaluated set and updating the model weights. Each generation thereafter, the individ-
ual with the highest approximated fitness as suggested by the model and a randomly
chosen unevaluated individual are fabricated and evaluated on the real fitness function
and added to the evaluated set. The model weights must be reinitialised each time
before training because of the temporal nature of pairing with the elite member. The
genetic algorithm runs for one generation (using the model-approximated fitnesses
where real fitness is unknown) before the individual with the highest approximated
fitness and a randomly selected unevaluated individual are evaluated with the elite
member from the other species; see Algorithm 2. The model parameters are β = 0.3,
θ = 0, elasticity = 1, calmingrate = 1, momentum = 0, elasticityrate = 0.

The fitness of each individual is the maximum combined array rotational speed
achieved over the period of 1 minute during the application of constant wind generated
by a propeller fan after fabrication by a 3D printer. The rotational speed is the significant
measure of aerodynamic efficiency, since the design space is constrained (including
rotor radius and turbine height). However, in future work, the power generated will
be preferred, which will take into account any slight weight variations that may affect
performance. The rotational speed is here measured in number of revolutions per
minute (rpm) using a digital photo laser tachometer (PCE-DT62; PCE Instruments
UK Ltd) by placing a 10 × 2 mm strip of reflecting tape on the outer tip of one of
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the individual’s blades. The experimental setup can be seen in Figure 6, showing the
30 W, 3500 rpm, 304.8 mm propeller fan, which generates 4.4 m/s wind speed, and
two turbines mounted on rigid metal pins 1 mm in diameter and positioned 33 mm
adjacently and 30 mm from the propeller fan. That is, there is a 3 mm spacing between
the blades at their closest point.

4 Experiments

4.1 Modelling Techniques

To explore whether there is any significant advantage in replacing the neural network
used previously as the surrogate model, several algorithms using the Weka 3.6.10 ma-
chine learning collection2 were run over the data generated by Preen and Bull (2014a). It
is important to note that a surrogate model with a larger fitness prediction error may be
more accurate in predicting the rank order of individuals than a model with lower error.
Since the rank order is the guiding influence on the evolutionary process, alternative
quality measures for approximate models have therefore been suggested. However,
Bischl et al. (2012) found no difference between using the root mean squared error

2Weka is an open source data-mining algorithm collection. http://www.cs.waikato.ac.nz/ml/
weka/
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Figure 6: VAWT array experimental setup.

(RMSE), mean absolute error (MAE), or Spearman’s rho, which measures the correla-
tion between the actual and predicted ranking. Furthermore, in practice, optimisation
based on the fitness accuracy has often been found to perform the best (e.g., Hüsken
et al., 2005). Thus, the MAEs of the fitness predictions are here used as the performance
metric.

Table 1 shows the average MAEs for various algorithms predicting the fitness of
evolved individuals. Each number represents the average MAE over 100 runs using
10-fold cross-validation (CV). The results are marked in bold font where they are statis-
tically different from the standard MLP at the 95% confidence level using a two-sample
t-test assuming unequal variances. GA is the z-axis varying GA-only single VAWT ex-
periment (N = 100); SGA is the surrogate-assisted GA z-axis varying VAWT experiment
(N = 100); CGA-1 is the first species from the CGA experiment (N = 80); CGA-2 is the
second species from the CGA experiment (N = 80); SCGA-1 is the first species from the
surrogate-assisted CGA experiment (N = 80); and SCGA-2 is the second species from
the surrogate-assisted CGA experiment (N = 80). Default Weka parameters were used
unless otherwise specified.

The results show that there is little statistical difference between the algorithms in
predicting the fitness of the evolved individuals. This is perhaps due to the very small
and noisy training samples available for this task. We therefore continue with neural
network surrogate models, which are well suited to problems with a high-dimensional
input space (design space) and limited number of samples (Jin, 2005). In addition,
neural network modelling frequently outperforms more complex approaches such as
coevolutionary active learning (Ly and Lipson, 2014).

4.2 Windowing

In interactive evolutionary computation, a user’s evaluation is relative within each
generation, and therefore fitness values from generations long past may differ from
recent generations even if the evaluated candidate is identical. Consequently, Wang and
Takagi (2005) found that a neural network surrogate model using only recent training
data was more effective than using all past data. In addition, many other surrogate-
assisted approaches have used fixed-length training sets (e.g., Bull, 1997b), although
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Table 1: Average mean absolute errors for algorithms predicting the fitness of evolved
individuals from the experiments of Preen and Bull (2014a). Results marked in bold
font are statistically different from the standard MLP at the 95% confidence level using
a two-sample t-test assuming unequal variances.

Algorithm GA SGA CGA-1 CGA-2 SCGA-1 SCGA-2

Standard MLP 197.89 237.86 430.30 432.64 462.57 394.04
Linear regression 158.91 170.78 275.13 390.79 361.97 379.08
Isotonic regression 135.57 145.97 327.22 462.68 367.10 523.73
Pace regression 160.75 172.57 257.57 397.99 380.85 384.50
Least med squares 208.80 237.78 306.71 432.26 334.00 447.14
SMO regression 152.70 191.33 280.94 370.18 334.65 356.75
MLP N = 1,000 H = 10 207.21 241.89 451.91 427.81 503.93 418.42
MLP N = 1,000 H = 100 265.10 202.33 385.61 414.38 416.14 408.88
MLP N = 10,000 H = 10 256.52 305.41 562.50 481.27 654.00 487.14
MLP N = 500 H = 10 191.63 216.88 397.40 401.16 405.01 401.27
MLP N = 500 H = 1 142.13 174.45 384.69 338.37 410.49 333.47
MLP N = 1,000 H = 1 142.32 177.98 395.50 340.86 418.94 343.24
MLP N = 10,000 H = 1 159.20 193.07 429.34 364.05 446.37 366.36
MLP N = 500 H = 2 154.28 181.66 392.26 389.26 390.21 337.27
MLP N = 1,000 H = 2 156.30 181.51 408.23 407.67 408.15 358.50
Gaussian processes 168.00 193.03 281.32 369.74 323.65 361.45
RBF B = 2 172.28 180.44 432.09 533.81 482.91 596.46
RBF B = 10 213.94 158.23 1253.08 512.91 404.72 3981.20
REP tree 196.11 164.33 346.77 343.68 394.93 377.64
Decision stump 169.99 193.78 325.33 488.70 390.42 519.27
M5P 165.70 168.34 311.37 337.33 355.37 350.04

they did so to save computational time rather than to intentionally aid convergence.
Because of the temporal nature of partnering with the elite species members it may be
advantageous to exclude older training samples for SCGAs. To explore whether there
is any benefit from using different windowing approaches to training the surrogate
model, 13 different models from Weka were run across the four datasets consisting of
the 80 evaluated individuals in each species from the coevolution experiments: two
species for CGA and two for SCGA. The final two individuals from each set were used
for testing and were excluded from any training.

The models used are as follows. Weka default parameters were used unless other-
wise stated: (1) Gaussian processes (support vector, RBF kernel); (2) isotonic regression;
(3) linear regression (M5 attribute selection); (4) multilayer perceptron;
(5) SMOreg (RBF kernel, RegSMO improved); (6) RBF network (B = 2); (7) RBF net-
work (B = 100); (8) multilayer perceptron (N = 1,000, H = 10, M = 0); (9) multilayer
perceptron (N = 500, H = 1); (10) multilayer perceptron (N = 1,000, H = 1); (11) multi-
layer perceptron (N = 500, H = 5); (12) multilayer perceptron (N = 1,000, H = 5); (13)
multilayer perceptron (N = 1,000, H = 100).

One set of experiments used the full 78 training samples for each dataset (T = 78);
one set used the most recent 40 training samples (T = 40); one set used the most recent
20 training samples (T = 20); and one set used the most recent 10 training samples
(T = 10). The average of the 13 algorithms’ MAEs over the four datasets with T = 20
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Figure 7: Array rotational speed-based evolution. Fittest array pairs. The SCGAs are
used for comparison only after 120 evaluations (three generations) of the CGA, since
sufficient training data are required for the surrogate models.

(M = 197.11, SD = 30.54, N = 13) is significantly less than T = 78 (M = 336.39, SD =
18.34, N = 13) using a two-sample t-test assuming unequal variances, t(14) = 4.76,
p = .0003. In addition, the average MAE of T = 20 is also significantly less than T = 40
(M = 269.94, SD = 16.43, N = 13), t(16) = 3.31, p = .0045. However, the average MAE
of T = 10 (M = 190.14, SD = 15.03, N = 13) was not significantly less than T = 20,
t(17) = 0.74, p = .47.

These results suggest that using the most recent 20 training samples (i.e., P) produces
a more accurate model than using the full evaluation set. The SCGA was therefore rerun
as before, using only the most recent 20 evaluated individuals for training (SCGA-
20T); the results are shown in Figure 7. The average rotational speed of the original
SCGA (M = 2,112, SD = 307, N = 40) was significantly greater than CGA (M = 1,905,
SD = 223, N = 40) using a two-tailed Mann-Whitney test, U = 331, p ≤ 6.4 × 10−6.
Furthermore, the fittest array combination designed by SCGA (2429 rpm) was greater
than CGA (2209 rpm) after 160 fabrications. However, the average rotational speed
of SCGA-20T (M = 1,971, SD = 386, N = 40) is not significantly different than SCGA
(M = 2,112, SD = 307, N = 40) using a two-tailed Mann-Whitney test, U = 629, p ≤ .1,
and the fittest array combination was nearly identical after 160 fabrications; SCGA-20T
2444 rpm versus SCGA 2429 rpm. The fittest CGA, SCGA, and SCGA-20T evolved
arrays after 160 fabrications can be seen in Figure 8.

4.3 Model Enhanced Local Search

Typically n individuals are evaluated with the real fitness function each generation,
where n < P . This results in a population consisting of a mix of individuals evaluated
with the real fitness function and those whose fitnesses are approximated. However,
Ulmer et al. (2004) introduced a preselection approach to the surrogate assistance of ESs.
The approach consists of creating λPre offspring, where λPre > λ, and evaluating each
with the surrogate model; whereupon the λ individuals with the highest approximated
fitness are then selected to form the offspring population and are evaluated with the
real fitness function. The main difference is that with preselection all offspring are
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Figure 8: Fittest evolved interacting VAWTs after 160 fabrications.

generated from parent individuals evaluated directly with the real fitness function. This
enables an enhanced local search through the evaluation of a large number of offspring
while preventing the evolutionary search from drifting too far from the evaluated
design space, which can occur when repeatedly creating offspring from approximated
individuals. They found that the bigger λPre is, the better the algorithm performed.
Here we explore the use of a SCGA with an enhanced local search, SCGA-ELS. The
CGA runs as usual except that each time a parent is chosen, m number of offspring
are created and evaluated with the surrogate model, and the single offspring with
the highest approximated fitness is then fabricated and evaluated with the real fitness
function before being added to the population; see Algorithm 3. Here m = 1,000. The
results are shown in Figure 9.

The average rotational speed of SCGA-ELS (M = 2,264, SD = 322, N = 40) is sig-
nificantly greater than SCGA (M = 2,112, SD = 307, N = 40) using a two-tailed Mann-
Whitney test, U = 469, p ≤ .0015. Furthermore, the fittest SCGA-ELS array pairing
(2692 rpm; see Figure 10) was greater than SCGA (2429 rpm) after 160 fabrications. How-
ever, this comparison may not be fair to the original SCGA, which fabricates a randomly
selected individual as well as the best each epoch, whereas SCGA-ELS only fabricates
the best. Therefore, a two-tailed Mann-Whitney test was performed for the rotational
speed of SCGA-ELS over the first 20 model-suggested offspring (M = 2,303, SD = 134,
N = 20) with only the suggested best offspring from SCGA (M = 2,087, SD = 386,
N = 20), and the result was found to be statistically significant, U = 114, p ≤ .02. The
same comparison was made for SCGA-ELS over the first 20 model-suggested offspring
with only the suggested best offspring from SCGA-20T (M = 1,907, SD = 443, N = 20),
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Figure 9: Array rotational speed-based evolution. Fittest array pairs. The SCGAs are
used for comparison only after 120 evaluations (three generations) of the CGA, since
sufficient training data are required for the surrogate models.

and the result was also statistically significant, U = 73.5, p ≤ .00063. SCGA-ELS there-
fore seems to offer a clear benefit in these experiments.
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Figure 10: SCGA-ELS fittest evolved interacting VAWTs after 160 fabrications; 2692 rpm.

4.4 Collaboration Strategies

While it is relatively costly to fabricate a new VAWT prototype (∼30 minutes), the ro-
tational speed measurement with the laser tachometer is relatively cheap (≤ 1 minute).
Therefore, while it may not be the case for more elaborate wind tunnel testing condi-
tions, here reevaluating some fabricated individuals with other partners may provide
a relatively cheap way to increase performance. To see whether a two-partner strategy
can increase the performance in designing two interacting VAWTs, the CGA was rerun
with the same initial population as before, but collaboration was performed with an
individual that was fitness proportionately selected (i.e., roulette wheel) in addition to
the usual elite member from the other species population, and the larger of the two fit-
ness scores assigned to the individual being evaluated (CGA-2). Since initially no fitness
scores are known, each individual in the first generation of a species population was
evaluated in conjunction with a single randomly selected individual from the other
population (that is, as before) and also with a second randomly selected individual,
uniquely chosen for each evaluation, and the larger of the two shared fitness scores
assigned.

So far, it had been assumed that there is a significant degree of asymmetry within the
array solution and hence no cross-species gene sharing had been permitted. However,
it is possible that there may be sufficient symmetry that can be exploited to increase
performance. Therefore, the CGA was also rerun with the same initial population as
before, but an offspring was also evaluated in the alternative physical position and in
collaboration with the elite member from its own species population (CGA-CROSS).
If the fitness is greater than the population best fitness, it is also added to that species
population, replacing the worst individual.

Figure 11 shows the rotational speed of the fittest array pairings evolved by the
original CGA, CGA-2, and CGA-CROSS over 120 fabrications. As can be seen, the fittest
CGA-2 array pairing after 120 fabrications (2343 rpm) is greater than CGA (2158 rpm).
Furthermore, the average combined rotational speed of the final 40 offspring formed
by CGA-2 (M = 2,053, SD = 295, N = 40) is significantly greater than the original CGA
(M = 1,882, SD = 316, N = 40) using a two-tailed Mann-Whitney test, U = 481, p ≤
.0022. The extra evaluation during initialisation was used 38 out of 40 times, which
provided an initial performance boost. However, during steady state evolution the
extra evaluation was only used 4 out of 80 times. That is, the roulette wheel–selected
partner resulted in a combined rotational speed greater than when paired with the best
individual only 5% of the time. Moreover, the average difference of those fitness scores
was only 12 rpm, which probably would have made little difference to the GA. While
not used for fitness determination during the experiment, a randomly selected partner
was also evaluated with each offspring and found to have a near identical effect to
the roulette wheel collaborator, being greater than the best partner 4 out of 80 times
with an average difference of 46 rpm. Thus it appears that performing extra evaluations
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Figure 11: Array rotational speed-based evolution. Fittest array pairs.

Figure 12: Fittest evolved interacting VAWTs after 120 fabrications.

during initialisation provides a significant boost to performance over only partnering
with a single random collaborator, but thereafter there is little performance benefit from
performing extra evaluations.

The fittest CGA-CROSS array pairing after 120 fabrications (2373 rpm) is similar to
CGA-2 (2343 rpm). In 7 out of the 80 extra evaluations performed in the CGA-CROSS
experiment, evaluating the offspring in the alternative position resulted in a faster
combined rotational speed than the fittest individual in that species. Furthermore,
both individuals in the fittest array pairing were offspring produced in the alternative
species, showing that there is a high degree of symmetry in the task. However, despite
the extra evaluations having resulted in a VAWT pair with a higher rotational speed
than the fittest pair from the original CGA (2158 rpm), the average combined rotational
speed of the final 40 CGA-CROSS offspring evaluated in the original species position
(M = 1,988, SD = 261, N = 40) is not statistically different from CGA using a two-tailed
Mann-Whitney test, U = 655, p ≤ .163. The fittest CGA-2 and CGA-CROSS interacting
VAWTs after 120 fabrications are shown in Figure 12.
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5 Conclusions

This article has explored a range of surrogate modelling and evolutionary techniques
used to design interacting VAWTs wherein candidate prototypes are fabricated by a
3D printer and evaluated under fan-generated wind conditions. The experiments here
have shown that it is possible to use SCGAs to iteratively increase the performance
of closely positioned Savonius turbines, exploiting the interturbine flow effects, which
is extremely difficult to achieve under simulation. The SCGA represents a scalable
approach to the design of wind turbine arrays, since the number of inputs to the
surrogate-models remains constant regardless of the number of turbines undergoing
evolution.

The accuracy of various modelling algorithms used to estimate the fitness of evalu-
ated individuals from the initial experiments was compared, finding that there is little
difference between the algorithms for the current task. The effect of temporally window-
ing the surrogate model training samples was shown to be a promising approach, but
it resulted in no performance benefit in practice. Subsequently, a SCGA based on an en-
hanced local search was introduced and found to produce more efficient designs within
the same number of fabrications when compared with the original SCGA approaches.
Finally, alternative coevolution collaboration schemes were examined, finding an ini-
tial performance increase resulting from more accurate fitness assignments but with
no significant improvement thereafter. This highlights that while much can be learned
by developing optimisation algorithms using simulated problems and mining data,
significant differences in performance are often found when applying the results to
the real application. Thus, whilst general learning algorithms provide a starting point
for exploration, there is no escape from further development directly in the problem
application.

The use of 3D printing to physically instantiate candidate designs completely avoids
the use of 3D computer simulations, with their associated processing costs and mod-
elling assumptions. In this case, 3D CFD analysis was avoided, but the approach is
equally applicable to other real-world optimisation problems, for example, those re-
quiring computational structural dynamics or computational electromagnetics simula-
tions. We anticipate that in the future such design mining approaches will yield unusual
yet highly efficient designs that exploit characteristics of the environment or materials
that are difficult to capture formally or in simulation. This has the potential to place
knowledge discovery at the core of engineering design, particularly within an iterative
framework such as in agile approaches.

Although the print resolution used here to build the prototypes was set at the
printer default, the resolution can be adjusted to provide coarser designs at a faster
rate for preliminary studies (e.g., for early evolutionary candidates), or slower, higher-
resolution prints for more subtle optimisation. Further, only PLA plastic was used here
to fabricate designs, but other materials such as flexible rubbers or multimaterial designs
can be constructed and explored by an EA. Thus 3D printing offers a range of ways to
customise the evolutionary instantiation to the design task. Multiple 3D printers can
also easily be used to perform parallel fabrication to speed up the process.

Future work will include the use of the power generated as the fitness computation
under various wind tunnel conditions; the coevolution of larger arrays, including the
turbine positioning; the exploration of more advanced assisted learning systems to
reduce the number of fabrications required; examination of the effect of seeding the
population with a given design; investigation of alternative representations that provide
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more flexible designs including variable number of blades, for example, supershapes
(Preen and Bull, 2014b); and the production of 1:1 scale designs.

The issue of scalability remains an important future area of research. When the scale
of designs is increased, the changes in dimensionality will greatly affect performance;
however, it remains to be seen how performance will change in the presence of other
significant factors such as turbine wake interactions in the case of arrays. One potential
solution is to simply use larger 3D printing and wind tunnel capabilities whereby larger
designs could be produced by the same method. On the opposite end of the spectrum,
micro wind turbines that are 2 mm in diameter or smaller can be used to generate
power, such as for wireless sensors (Howey et al., 2011), and in this case more precise
3D printers would be required. Moreover, wind turbines can find useful applications
on any scale. For instance, a feasibility study (Park et al., 2012) for powering wireless
sensors on cable-stayed bridges examined turbines with a rotor diameter of 138 mm in
wind conditions with an average of 4.4 m/s (similar to the artificial wind conditions
used in this article).

If the recent speed and material advances in rapid-prototyping continues, along
with the current advancement of evolutionary design, it will soon be feasible to perform
a wide array of automated complex engineering optimisation in situ, whether on the
microscale (e.g., drug design), or the macroscale (e.g., wind turbine design). That is,
instead of using mass manufactured designs, EAs will be used to identify bespoke
solutions that are manufactured to compensate and exploit the specific characteristics
of the environment in which they are deployed, for example, local wind conditions,
nearby obstacles, and local acoustic and visual requirements for wind turbines.
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